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Abstract

Granular instrumental variables (GIV) has experienced sharp growth in empirical

macro-finance. The methodology’s rise showcases granularity’s potential for identifica-

tion across many economic environments, like the estimation of spillovers and demand

systems. I propose a new estimator—called robust granular instrumental variables

(RGIV)—that enables studying unit-level heterogeneity in spillovers. Unlike existing

methods that assume heterogeneity is a function of observables, RGIV leaves hetero-

geneity unrestricted. In contrast to the baseline GIV estimator, RGIV allows for un-

known shock variances and equal-sized units. Applied to the Euro area, I find strong

evidence of country-level heterogeneity in sovereign yield spillovers.
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1 Introduction

In many macroeconomic settings, researchers wish to estimate the spillover of an idiosyncratic

shock to one unit onto other units. Examples include estimating the contagion effects of fi-

nancial market distress, aggregate demand externalities on individual consumption, strategic

complementarities in price setting, and the price elasticity of demand of the stock market

(Allen et al., 2009; Auclert et al., 2023; Alvarez et al., 2022; Gabaix and Koijen, 2021). Iden-

tifying plausibly exogenous variation in these settings however is notoriously difficult and

contributes to the continued challenges of conducting empirical work.

Gabaix and Koijen (2020) tackles this difficulty with a novel technique, called granular in-

strumental variables (GIV). They consider environments where an individual unit’s outcome

is partially determined by the size-weighted outcome. Thus, idiosyncratic shocks to a single

unit spill over to all other units in equilibrium. To overcome the resulting endogeneity bias,

their instrument for the size-weighted outcome is constructed as the difference between size-

and equal-weighted outcomes. Their instrument is “granular” in that idiosyncratic shocks

to large units are the primary source of identifying variation as they disproportionately con-

tribute to movements in the size-weighted outcome variable. The broad adoption of GIV in

applied macroeconomics and finance is indicative of its usefulness (Chodorow-Reich et al.,

2021; Adrian et al., 2022; Camanho et al., 2022; Gabaix and Koijen, 2021).

The baseline GIV estimator of Gabaix and Koijen (2020), however, requires strong as-

sumptions to satisfy the instrumental variables relevance condition and exclusion restriction

and its extensions require further conditions. The baseline estimator requires homogeneous

spillovers across units, homogeneous shock variances, skewed unit size, and idiosyncratic

shocks (uncorrelated shocks between units after accounting for a known factor structure). In

particular, there is typically no ex-ante rationale for there to be homogeneous spillovers

and shock variances across units, contributing to the gap between theory and practice.

Furthermore, I show that there is no general guarantee that the GIV spillover estimand

admits a positive-weighted average of unit-specific spillovers. To address these concerns,

Gabaix and Koijen (2020) generalize their procedure to allow for heterogeneity that is a

function of observables, but the empirically important question of how to best tackle unob-

served heterogeneity remains open.

This paper’s main contribution is to establish global identification for a GIV model with

unit-specific spillovers and unknown shock variances. I propose an estimator, called robust

granular instrumental variables (RGIV), that is robust in the sense that it is applicable

to a wider set of environments than the baseline Gabaix and Koijen (2020) GIV estimator.

Ultimately, RGIV brings the study of unit-level heterogeneity—a feature that is of substantial
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importance in other areas of macroeconomics1—to the estimation of spillovers.

RGIV uses internally estimated idiosyncratic shocks as instruments for the size-weighted

outcome variable. Informally, the procedure can be described sequentially. An initial guess

of the first unit’s spillover gives an estimate of the first unit’s idiosyncratic shock. Using this

estimated shock as an instrument for the size-weighted outcome variable, the remaining units’

spillover coefficients and estimated idiosyncratic shocks can be computed. If one or more

pairs of estimated idiosyncratic shocks are correlated, we can guess a new spillover for the

first unit and repeat the procedure until the estimated idiosyncratic shocks are uncorrelated.

RGIV makes use of granularity by exploiting the contribution of individual shocks (even to

relatively small units) to movements in the size-weighted outcome variable. This approach

differs from the baseline GIV estimator in that skewness in the size distribution of units and

homogeneity in shock variances are not required.

I prove that there is an inevitable trade-off in assumptions between allowing for general

spillover heterogeneity and a general shock covariance structure. Like GIV, the RGIV esti-

mator can easily accommodate cross-unit correlations that are due to observed covariates

(both time-varying and unit-specific) or a known factor structure in the residuals. However,

I prove that a model with an unknown factor structure and unrestricted spillover heterogene-

ity is not identified. Hence, researchers must restrict either spillover heterogeneity or the

correlation structure of the shocks.

I develop tests that evaluate the appropriateness of (1) the RGIV framework and (2) the

homogeneous spillovers assumptions featured in Gabaix and Koijen (2020). These hypothesis

tests are applications of standard GMM results (Newey and McFadden, 1994). The first test

is the Sargan–Hansen test, where the null hypothesis of correct specification is rejected when

one or more pairs of estimated idiosyncratic shocks are correlated. The second test is the

distance metric test, where the null hypothesis is rejected when the constraint of spillover

homogeneity binds.

Building on the analysis of a working paper version of Gabaix and Koijen (2020), I apply

RGIV to sovereign yield spillovers in the Euro area and find strong evidence of spillover

heterogeneity among Euro area members. I control for correlations induced by heteroge-

neous loadings on unobserved aggregate shocks by including a rich set of observed explana-

tory variables. In addition, I account for the well-documented correlation of shocks among

Euro area countries by size-aggregating countries into larger “core” and “periphery” blocks

(Bayoumi and Eichengreen, 1992). Under the preferred specification, I fail to reject the null

hypothesis of correct specification. Meanwhile, the null hypothesis of spillover coefficient

1For instance, take household-level differences in the marginal propensity to consume akin to
Fagereng et al. (2021); Lewis et al. (2021); Fuster et al. (2021).
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homogeneity is strongly rejected. I find that the size-weighted spillovers of countries in the

western-periphery block (Portugal, Spain, and Ireland) are approximately twice that of the

core country block.

In a simulation study, I also show that RGIV confidence intervals have good finite sam-

ple coverage properties under a DGP taken from the empirical application. GIV confidence

intervals in contrast can undercover under spillover heterogeneity and when shock variances

are taken to be unknown.

Literature My model generalizes the baseline environment of Gabaix and Koijen (2020)

to allow for spillover heterogeneity, shock variance heterogeneity, and equal-sized units. For

estimation, RGIV fully exploits second moment information through GMM and can also

be adapted to the case in which correlations in shocks are induced by factors with known

loadings. In contrast, the spillover coefficient homogeneity, skewed size, and known shock

variance conditions are used to justify the validity of the GIV instrument. Gabaix and Koijen

(2020) also propose extensions that separately estimate spillover coefficient heterogeneity2

and unknown shock variances3. In contrast, RGIV doesn’t require skewness of the size

distribution, heterogeneity to depend on observables, or for shock variances to be known;

uncorrelated shocks is sufficient for jointly allowing unit-level spillovers and unknown shock

variances.

Baumeister and Hamilton (2023) applies the insights of GIV to show that a rich, struc-

tural model of the oil market (with unobserved explanatory variables and inventories) can

be estimated using full information maximum likelihood. Their estimator similarly exploits

shock orthogonality (in their case orthogonality of supply and demand shocks) and also

allows for elasticity heterogeneity. In contrast, I extend the simple setting originally con-

sidered by Gabaix and Koijen (2020) to transparently illustrate the conditions needed for

identification, for non-identification with unobserved explanatory variables, and to charac-

terize the RGIV estimator’s limit behavior. Rather than focusing on modeling assumptions

that are specific to particular applications, this paper seeks to provide researchers with a

parsimonious framework that could be adapted to their specific applications.

Banafti and Lee (2022) propose a refinement to the GIV estimator, allowing for unob-

served explanatory variables but require the number of economic units to be large and the

2Gabaix and Koijen (2020) Proposition 6 considers the case where unit-level spillover heterogeneity is de-
termined by observables, Section D.9.1 proposes unit-specific “leave-one-out” granular instruments for when
shock variances are known, and Section D.9.2 lists moment conditions for adapting GIV to heterogeneous
spillovers though without the analysis of its econometric properties.

3Gabaix and Koijen (2020) Section D.3 appends shock variance moments after assuming homogeneous
spillovers and global identification.
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size distribution to be skewed, unlike RGIV. Here, the principal challenge is to prevent the

law of large numbers from averaging away the granularity of units. The authors overcome

this challenge by requiring the right tail of the unit size distribution to be highly skewed,

with a Pareto tail index of less than 1. In contrast, RGIV is consistent even when the size

distribution is uniform.

GIV procedures are closely linked to models found in the spatial panel econometric lit-

erature (Su et al., 2023; Aquaro et al., 2021; Chen et al., 2022). GIV’s spillover network

structure can be viewed as a restricted form of spatial autocorrelation. Unlike these pa-

pers, I allow the number of units to be small (finite), show that the GIV spillovers under

unit-level heterogeneity are globally identified, and estimate spillovers without the use of

external instruments. More broadly, my procedure can also be viewed as a special case of a

simultaneous equation model with covariance restrictions, which is closely related to impact

matrix identification in the structural VAR setting (Sims, 1980; Hausman, 1983).

Outline Section 2 illustrates the properties of GIV and RGIV in a simple three unit set-

ting. Section 3 presents the main consistency and asymptotic normality results for the

RGIV estimator. Section 4 describes the RGIV specification test and parameter homogeneity

tests. Section 5 extends RGIV to include observable explanatory variables and discusses non-

identification under unobserved explanatory variables. Section 6 applies the RGIV estimator

to investigate sovereign yield spillovers in the Euro area. Section 7 examines finite-sample

coverage accuracy of RGIV and GIV through simulations. Section 8 concludes.

2 Simple illustration

The remainder of this paper will consider the sovereign yield spillovers application as a

running example. An idiosyncratic shock to one Euro area country raises yields in that

country, as well as those of other Euro area countries since losses from default are partially

shared. Country-specific spillovers are permitted.

In this section, I use a simple three-country setting to illustrate the construction and

properties of GIV and RGIV. Section 3 formalizes the discussion and generalizes to n coun-

tries.

Notation Throughout this paper, I will follow the notation of Gabaix and Koijen (2020)

for convenience. For a vector X = (Xi)i=1,...,n and size Si satisfying
∑n

i=1 Si = 1, the equal-
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weighted sum XE and size-weighted sum XS are defined below:

XE ≡ 1

n

n∑

i=1

Xi, XS ≡
n∑

i=1

SiXi.

Similarly, the equal-weighted and size-weighted cross-sectional averages for time series data

Xt = (Xit)i=1,...,n are defined as XEt ≡ 1
n

∑n
i=1 Xit and XSt ≡ ∑n

i=1 SiXit respectively.

2.1 Baseline three country setting

I will outline my “baseline” setting for the three country case using sovereign yield spillovers

in the Euro area as a running example. For countries i = 1, 2, 3, let yit be the yield spread

relative to some comparison country. Yield spread growth is rit =
yit−yi,t−1

yi,t−1
. Size Si is

observed and corresponds to a country’s “debt at risk.” Here, Si ∈ (0, 1) is taken to be

time-invariant and sums to 1.

Suppose the researcher is interested in estimating elasticity φi, which will be called the

“spillover coefficient.” Specifically, yield spread growth rit is determined by a country-specific

spillover coefficient φi, size-aggregated yield spread rSt, and idiosyncratic shock uit:

rit = φirSt + uit, i = 1, ..., n, φS < 1. (1)

The size-weighted spillover coefficient φS is taken to be less than 1. Moreover, shocks uit are

mutually and serially independent, mean zero, and have country-specific variance E(u2
it) =

σ2
i > 0.

The propagation of an idiosyncratic shock depends on the size of the shock’s origin

country, the recipient country’s spillover coefficient, and the size-weighted average spillover

coefficient. To illustrate, consider a unit idiosyncratic shock to country 1 (u1t = 1) holding

the idiosyncratic shocks of countries 2 and 3 at zero (u2t = u3t = 0). Then, the size-weighted

yield spread growth rSt increases by S1× 1
1−φS

, which is computed from taking a size-weighted

average of Equation 1:

3∑

i=1

Sirit =
3∑

i=1

Si(φirSt + uit) =⇒ rSt =
uSt

1 − φS

. (2)

The increase in rSt is larger when the size of country 1 is large and when countries are, on

average, sensitive to spillovers (from multiplier 1
1−φS

). Then, idiosyncratic shock u1t spills

over to r2t and r3t, giving rise to increases of φjrSt = φj
S1

1−φS
for j = 2, 3. The total increase

in r1t is 1+φ1
S1

1−φS
, a composition of the direct effect of idiosyncratic shock u1t and a spillover

effect.
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Granularity rules out the ordinary least squares regression of rit on rSt as a method

for estimating φi. Equation 2 highlights granularity in the baseline setting, showing that

idiosyncratic shocks are responsible for movements in the aggregated yield spread rSt since

Si > 0 and σ2
i > 0. Therefore, regressing rit on rSt to estimate φi as T → ∞ suffers from

endogeneity bias since E(rStu1t) =
S1σ2

1

1−φS
6= 0. An alternative estimator is needed.

2.2 Illustration of GIV

In this section, I review the baseline GIV estimator of Gabaix and Koijen (2020) applied

to this simple setting and discuss the conditions for its validity. I show that a skewed size

distribution is necessary for the relevance condition to hold. Shock orthogonality and homo-

geneous idiosyncratic shock variances are necessary for the instrumental variables exclusion

restriction to hold. Moreover, the exclusion restriction fails under heterogeneity of spillover

coefficients across countries. As discussed later, there are GIV extensions that individually

accommodate spillover coefficient heterogeneity and heterogeneous (and unknown) shock

variances, but these require additional conditions.

Take the setting of Section 2.1 and further assume homogeneous spillover coefficients

(φ1 = φ2 = φ3 = φ), homogeneous shock variances (σ2
1 = σ2

2 = σ2
3 = σ2), and skewed unit

sizes (ruling out S1 = S2 = S3). Just as in Section 2.1, granularity induces endogeneity bias

in the regression of rit on rSt for regression coefficient φ̂i
OLS

φ̂i
OLS − φ

p−→ E(rStrit)

E(r2
St)

− φ =
Siσ

2

E(r2
St)[1 − φ]

> φ.

Gabaix and Koijen (2020) propose estimating φ using instrumental variables. An equal-

weighted aggregation of the country-level yield spread growth gives rise to the following IV

regression model

rEt = φrSt + uEt.

The equal-weighted yield spread growth responds to the size-weighted yield spread growth

rSt (through spillover coefficient φ) and equal-weighted idiosyncratic shocks uEt. For the

IV regression model in the above display, “granular instrument” zt is constructed as the

difference between the size- and equal-weighted yield spread growth

zt := rSt − rEt =
(
φrSt + uSt

)
−

(
φrSt + uEt

)
= uSt − uEt.

From the homogeneous spillovers assumption, the endogeneity from the size-weighted yield
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spread growth rSt is differenced away.

Skewness in country sizes is crucial for the instrumental variables relevance condition to

hold and zt reflects variation coming from idiosyncratic shocks to relatively large countries.

To illustrate, first consider the extreme case of no skewness (S1 = S2 = S3). Then the size-

and equal-weighted yield spread growths are identical, producing a granular instrument that

is identically zero zt = 0. More generally, the instrumental variables relevance condition can

be explicitly computed:

E [ztrSt] =
1

1 − φ
E [uSt (uSt − uEt)]

=
σ2

1 − φ

[
S1

(
S1 − 1

3

)
+ S2

(
S2 − 1

3

)
+ S3

(
S3 − 1

3

)]
.

When the size of country 1 is large relative to other countries (when S1 ≫ S2, S3), the

relevance condition is further from zero reflected by the S1(S1 − 1/3) term.

The shock orthogonality and homogeneous (or known) shock variance assumptions are

crucial for the exclusion restriction to hold. Explicitly, the covariance between the instrument

and IV regression model error uEt is

E[uEt(uSt − uEt)] =
1

3

[
S1σ

2 + S2σ
2 + S3σ

2
]

− 1

3

[1

3
σ2 +

1

3
σ2 +

1

3
σ2

]

=
1

3
σ2 − 1

3
σ2 = 0.

In the first line of the above display, the uncorrelated shock assumption ensures that covari-

ance terms E(uitujt) are zero. The homogeneous shock variance assumption ensures that the

difference between the first line’s bracketed terms is zero. Note that any instrument of the

form z′
t = W1r1t +W2r2t +W3r3t − 1

3
r1t − 1

3
r2t − 1

3
r3t where W1 +W2 +W3 = 1 satisfies the

instrumental variables exclusion restriction. Gabaix and Koijen (2020) show that weighting

by size gives a variance-minimizing estimator for the IV regression model. The spillover

coefficient can also be consistently estimated when a time fixed effect is included, as the

time fixed effect is differenced away in the construction of zt.

The exclusion restriction argument described in the preceding paragraph can easily be

extended to settings in which the shock variances are known to the econometrician rather

than being homogeneous across units. Gabaix and Koijen (2020) show that identical com-

putations hold after replacing the equal weights in zt = rSt − rEt with inverse variance

weights.

Spillover coefficient heterogeneity leads to a failure in the instrumental variables exclusion

restriction. Allowing for unit-specific spillover coefficients, the granular instrument contains
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variation from rSt:

zt = rSt − rEt = (φS − φE)rSt + uSt − uEt. (3)

From the (φS − φE) term, the magnitude of the exclusion restriction’s violation is greater

when spillover coefficients vary systematically by size. Moreover, I show later in Proposition

1 that there is no guarantee that the GIV spillover coefficient estimand is a non-negative

weighted average of spillover coefficients. In this sense, the GIV spillover coefficient estimand

could be far from the potentially heterogeneous true spillover coefficients.

2.3 RGIV illustration: Environment as GMM moment conditions

This subsection introduces the estimator proposed in this paper, robust granular instrumen-

tal variables (RGIV). RGIV exploits the uncorrelatedness of idiosyncratic shocks through the

generalized method of moments. The estimator’s identifying variation comes from individual

country-level idiosyncratic shocks.

Returning to the baseline environment described in Section 2.1—which again features

unit-specific spillover coefficients φi and unit-specific shock variances σ2
i —the RGIV estima-

tor encodes the uncorrelatedness of idiosyncratic shocks through GMM moment conditions.

Taking sizes S1, S2, S3 as given, store data in the vector rt = [r1t, r2t, r3t]
′ and parameters

in φ = [φ1, φ2, φ3]
′. Letting ui(rt,φ) = rit − φirSt, moment function g(rt,φ) encodes the

condition that idiosyncratic shocks are uncorrelated

g(rt,φ) =
[
u1(rt,φ)u2(rt,φ) u1(rt,φ)u3(rt,φ) u2(rt,φ)u3(rt,φ)

]′

where E[g(rt,φ0)] = 0 for true parameter φ0. The parameter-dependent weight matrix

is Ŵ (φ) = diag
(

1
σ̂2

1(φ)σ̂2
2(φ)

, 1
σ̂2

1(φ)σ̂2
3(φ)

, 1
σ̂2

2(φ)σ̂2
3(φ)

)
for σ̂2

i (φ) = 1
T

∑T
t=1 ui(rt,φ)2. Then, the ro-

bust granular instrumental variables (RGIV) estimator is defined as a continuously updating

GMM estimator:

φ̂RGIV = arg min
φ:φS<1

(
1

T

T∑

t=1

g(rt,φ)
)′

Ŵ (φ)
(

1

T

T∑

t=1

g(rt,φ)
)
. (4)

Ŵ (φ) is an efficient GMM weight matrix when idiosyncratic shocks are independent. Avoid-

ing inversion of a potentially non-diagonal matrix, Ŵ (φ) also ensures numerical stability if

the initialization of φ is far from the GMM objective function’s minimum.

Equivalently, the optimization problem characterized in Equation 4 minimizes the av-

erage squared correlation coefficients between pairs of estimated idiosyncratic shocks. To
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see this, define the estimated correlation coefficient of idiosyncratic shocks as ρ̂ij(φ) =
1
T

∑T

t=1
ui(rt,φ)uj(rt,φ)√

σ̂2
i
(φ)σ̂2

j
(φ)

. Then, the RGIV estimator is

φ̂RGIV = arg min
φ:φS<1

1

3

[
ρ̂12(φ)2 + ρ̂13(φ)2 + ρ̂23(φ)2

]

after multiplying the objective function in Equation 4 by 1
3
. Intuitively, RGIV chooses the

spillover coefficient vector φ that makes the estimated shocks the least correlated.

RGIV also admits an instrumental variables interpretation, as a country’s spillover coef-

ficient is estimated using information from internally estimated idiosyncratic shocks to other

countries. The asymptotic variance matrix of the RGIV estimator is V = (G′Σ−1G)−1 for Ja-

cobian matrix G = E[∇φg(rt,φ0)] and moment covariance matrix Σ = E[g(rt,φ0)g(rt,φ0)′].

Then the diagonal entries of V are

Avar
(
φ̂RGIV

i

)
=

σ2
i∏

j 6=i

(
S2

j σ
2
j

) (1 − φS)2 (S2
1σ

2
1 + S2

2σ
2
2 + S2

3σ
2
3)

4
.

The above display illustrates that the identifying variation of the RGIV estimator doesn’t

require skewness in the unit size distribution, as the identifying variation comes from indi-

vidual idiosyncratic shocks. Estimates for φ̂RGIV
i are more precise when idiosyncratic shocks

to countries j 6= i have higher variance. Intuitively, the estimated idiosyncratic shocks can

be viewed as sequentially estimated internal instruments. Guessing the spillover coefficient

of country 1, the resulting estimated idiosyncratic shock to country 1 can be used as an

instrument for the estimation of the spillover coefficients for countries 2 and 3. If one or

more pairs of estimated idiosyncratic shocks are too correlated, the procedure is repeated

for a new spillover coefficient.

3 General model and main results

This section describes the assumptions needed for the robust GIV estimator for n countries.

3.1 Assumptions

Assumption 1. (Baseline model)

(i) Model: For n ≥ 3 units, let known sizes Si ∈ (0, 1) sum to 1. Outcome rt =

[r1t, . . . , rnt]
′ responds to the size-aggregated outcome rSt according to spillover coef-
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ficient φi and unobserved shocks ut = [u1t, u2t, . . . , unt]
′

rit = φirSt + uit, ∀i = 1, ..., n, φS < 1.

(ii) Shock moments: For σ2
i > 0, shocks ut are i.i.d. with moments E(ut) = 0, E(utu

′
t) =

diag(σ2
1, . . . , σ

2
n), and E(‖ut‖4) < ∞. Moreover, uit is independent of ujt for i 6= j.

(iii) Parameter space: For spillover coefficient φ = [φ1, . . . , φn]′, the true parameter φ0

is in the interior of parameter space Φ. Φ is compact and for any φ̃ ∈ Φ, φ̃S < 1.

In Assumption 1(i), the outcome variable rit responds to the size-aggregated outcome rSt

according to spillover coefficient φi and idiosyncratic shock uit. Through φS < 1, positive

idiosyncratic shocks increase the size-weighted outcome rSt. As will be outlined below, the

RGIV estimator is just-identified for n = 3 and over-identified for n > 3. Moreover, size Si

is taken to be known by the econometrician. Hence, the model presented in 1(i) can be be

modified to allow for time-varying size (for Sit ∈ (0, 1) and
∑n

i=1 Sit = 1) without changing

the proofs to follow. In Assumption 1(iii), the parameter space is assumed to be compact

and restricted to encode the sign restriction of φS < 1. Compactness is a standard technical

assumption for the consistency of extremum estimators (Newey and McFadden, 1994).

3.2 RGIV estimator

The GMM estimator established in Definition 1 below (called RGIV) exploits the uncorre-

lated unit-specific shock condition established in Assumption 1(ii). RGIV is constructed as a

continuously updating GMM estimator (Hansen et al., 1996). The moment function g(rt,φ)

contains the pairwise products of each of the estimated shocks, and the weight matrix in-

versely weights each moment by the product of the respective estimated shock variances.

Exploiting shock uncorrelatedness can be best understood as being consistent with the tradi-

tion of exploiting second moment information in the traditional SVAR identification setting

(Kilian and Lütkepohl, 2017; Leeper et al., 1996).

Definition 1. For outcome variable rt = [r1t, . . . , rnt]
′, let ui(rt,φ) = rit − φirSt for i =

1, ..., n. The moment function g(rt,φ) is

g(rt,φ) = [u1(rt,φ)u2(rt,φ), . . . , u1(rt,φ)un(rt,φ), u2(rt,φ)u3(rt,φ), . . . , un−1(rt,φ)un(rt,φ)]′.

For σ̂2
i (φ) = 1

T

∑T
t=1 ui(rt,φ)2, define the sample weight matrix

Ŵ (φ) = diag
( 1

σ̂2
1(φ)σ̂2

2(φ)
, . . . ,

1

σ̂2
1(φ)σ̂2

n(φ)
,

1

σ̂2
2(φ)σ̂2

3(φ)
, . . . ,

1

σ̂2
n−1(φ)σ̂2

n(φ)

)
.
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Then, for GMM objective function Q̂T (φ) =
[

1
T

∑T
t=1 g(rt,φ)

]′

Ŵ (φ)
[

1
T

∑T
t=1 g(rt,φ)

]
,

the robust granular instrumental variables (RGIV) estimator is

φ̂RGIV = arg minφ:φS<1 Q̂T (φ).

The RGIV estimator is robust in that the estimator allows for unit-specific spillover

coefficient heterogeneity while also allowing for unknown shock variances and equal unit

sizes. When the researcher is a priori certain of homogeneous spillover coefficients φi = φ,

the RGIV moment vector can accommodate this parameter restriction by restricting the

elements of parameter vector φ to be homogeneous across units yielding possible gains in

efficiency. Moreover, the assumption of parameter homogeneity is formally testable as will

be discussed in Section 4.

Lemma 1 (Identification). Impose Assumption 1. For g0(φ) = E[g(r,φ)], g0(φ0) = 0 for

the true parameter φ0 and g0(φ̃) 6= 0 for φ̃ ∈ Φ such that φ̃ 6= φ0.

Proof. See Appendix A.4.

For Lemma 1, the parameter space restriction φ̃S < 1 in Assumption 1(iii) rules out the

false solution to the population moment condition. The proof of Lemma 1 shows that there is

a second parameter φ̌ such that g0(φ̌) = 0. However, φ̌ is not in the parameter space because

φ̌S = 1 + (1 − φS) > 1 and thus is not a candidate solution. In economic terms, Assumption

1(iii) represents the researcher’s knowledge of the sign of an idiosyncratic shock’s effect on

the size-weighted outcome rSt. This knowledge can come from an application’s institutional

details; for the case of the running example of Eurozone yield spread spillovers, a positive

idiosyncratic shock to one country gives rise to an increase in aggregated yield spreads since

losses from the default of government debt are partially shared. The identification lemma

can also be adapted for the opposite case φS > 1 by reversing the inequality specified in

Assumption 1(iii) to φ̃S > 1.

Mimicking Assumption 1 of Gabaix and Koijen (2020), the Lemma is derived under the

weaker condition that the correlation structure of shocks is known (see Condition (ii’) in Ap-

pendix A.4 for details). Theorems 1 and 2 (below), which establish consistency and asymp-

totic normality of the RGIV estimator, are shown under the assumption of uncorrelated

shocks but can analagously be adapted to the known shock correlation case. These results

follow from a standard application of arguments provided in Pakes and Pollard (1989).

Theorem 1 (Consistency of RGIV). Impose Assumption 1. The RGIV estimator is consis-

tent φ̂RGIV p−→ φ0 for the true parameter φ0 as T → ∞.

Proof. See Appendix A.1.
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Theorem 2 (Asymptotic normality of RGIV). Impose Assumption 1. The RGIV estimator

is asymptotically normal

√
T (φ̂RGIV − φ0)

d−→ N(0, (G′WG)−1G′WΣWG(G′WG)−1)

for RGIV population weight matrix W = diag( 1
σ2

1σ2
2
, . . . , 1

σ2
1σ2

n
, 1

σ2
2σ2

3
, . . . , 1

σ2
n−1σ2

n
), moment co-

variance matrix Σ = E[g(rt,φ0)g(rt,φ0)
′] and G = E[∇φg(rt,φ0)] as T → ∞.

Proof. See Appendix A.2.

Remarks.

1. The assumptions of granularity (Si > 0) and non-zero shock variances (σ2
i > 0) guaran-

tee that G′WG is full rank. Intuitively, these conditions guarantee that idiosyncratic

shocks contribute to fluctuations in the endogenous variable rSt and can be exploited as

identifying variation. Granularity and non-zero shock variances can loosely be viewed

as the corresponding “relevance conditions” for the RGIV setting.

2. Diagonal weight matrix Ŵ (φ̂RGIV ) is an estimator for the efficient GMM weight matrix

when idiosyncratic shocks are not only uncorrelated, but also independent. Its specific

form allows the RGIV estimator to be interpreted as the φ that minimizes the average

squared correlation coefficient between shocks. Practically, a continuously updating

GMM estimator with diagonal weight matrix Ŵ (φ) is one way to ensure the stability of

the GMM objective function when T is relatively small. The choice of a diagonal Ŵ (φ)

hedges against potential numerical instability relative to choosing an alternative weight

matrix constructed as W (φ) = [ 1
T

∑T
t=1 g(rt,φ)g(rt,φ)′]−1. Evaluating an objective

function using a weight matrix of the formW (φ) would require inverting the potentially

ill-conditioned matrix 1
T

∑T
t=1 g(rt,φ)g(rt,φ)′, which could arise if the initial conditions

for the sample GMM objective function are far from the true value.

3. In Section 7, the procedure is implemented in MATLAB using the constrained non-

linear optimizer fmincon(). The sample GMM objective function Q̂T (φ) described

in Definition 1 is used as the objective function with the constraint φS < 1. As

is standard for GMM estimators, the asymptotic variance for φ̂RGIV can be com-

puted using “plug-in” estimators for the components of the asymptotic variance ex-

pression in Theorem 2. Specifically, I use the weight matrix estimator Ŵ (φ̂RGIV )

from Definition 1 for W , the sample analogue of the moment covariance matrix Σ̂ =
1
T

∑T
t=1 g(rt, φ̂

RGIV )g(rt, φ̂
RGIV )′ for Σ, and the sample analogue of the Jacobian matrix

Ĝ = 1
T

∑T
t=1 ∇φg(rt, φ̂

RGIV ) for G.
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4. Under the weaker condition of cross-sectional shock uncorrelatedness (imposing E[uitujt] =

0 for i 6= j rather than the stronger condition of uit ⊥⊥ ujt), the RGIV estima-

tor is still consistent and asymptotically normal. However, the GMM weight matrix

Ŵ (φ̂RGIV ) would no longer converge in probability to the efficient GMM weight ma-

trix W = E[g(rt,φ0)g(rt,φ0)
′]−1. Shock independence guarantees that off-diagonal

elements of W are zero and that the on-diagonal elements are multiplicatively sep-

arable i.e. that E(u2
itu

2
jt) = E(u2

it)E(u2
jt) for i 6= j. Under the weaker condition of

uncorrelated shocks, higher order dependence (like that arising from a shared volatility

term) is permissible.4 Here, the weight matrix is no longer efficient but the estimator

is still consistent and asymptotically normal.

5. φ̂RGIV can still be used as a plug-in estimator for the efficient GMM weight matrix

when idiosyncratic shocks are uncorrelated but not independent. The following gives

an example of one such procedure. First, as noted in the previous bullet, RGIV can be

used to obtain a preliminary (consistent) estimate of the spillover coefficient. Second,

GMM can be used to estimate φ̂Step 2 with sample GMM weight matrix Ŵ Step 2 =

[ 1
T

∑T
t=1 g(rt, φ̂

RGIV )g(rt, φ̂
RGIV )′]−1. Since Ŵ Step 2 is an estimator for the efficient

GMM weight matrix under uncorrelated but not independent shocks, φ̂Step 2 is an

efficient estimator for φ0.

3.3 GIV under spillover coefficient heterogeneity

In general, the baseline Gabaix and Koijen (2020) GIV estimand φGIV under spillover co-

efficient heterogeneity cannot be interpreted as a weighted average of unit-specific spillover

coefficients. From Equation 3, the spillover coefficient homogeneity assumption is necessary

for the instrumental variable exclusion restriction to hold, as it ensures the endogenous term

rSt is differenced away. When shock variances are homogeneous across countries, Propo-

sition 1 (below) decomposes the GIV estimand into an equal-weighted spillover coefficient

term and a term that depends on (φS −φE). The bias is larger when the spillover coefficient

varies systematically with the size distribution, giving rise to a larger gap between φS and

φE. Moreover, as also discussed in Appendix D.8 of Gabaix and Koijen (2020), the bias is

smaller when the number of units is large.

4Serial correlation is another form of dependence of interest for applied work. Here, Theorem 2 can be
adapted to serially correlated shocks by exchanging the currently used central limit theorem for independent
and identically distributed data for one applicable to data with dependence, like those found in Davidson
(1994).
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Proposition 1. Impose Assumption 1 and shock variance homogeneity (σ2
i = σ2). Then the

GIV estimand is

φGIV =
E(ztrEt)

E(ztrSt)
= φE +

φS − φE

n
· 1

φS−φE

1−φS
[
∑n

i=1 S
2
i ] − 1

n
+

∑n
i=1 S

2
i

.

Proof. See A.3.

Proposition 1 implies that the GIV estimand doesn’t admit a weighted average inter-

pretation of unit-specific spillover coefficients. To see this, consider the following example.

Suppose n = 3, S =
[
0.2 0.3 0.5

]′
, and φ =

[
0.6 0.3 0.3

]′
. Applying Proposition 1,

φGIV = −0.18 6∈ [0.3, 0.6], so φGIV is not a positive weighted average of individual spillover

coefficients. Section 7 investigates the practical implications of GIV under spillover coefficient

heterogeneity using an empirically relevant DGP.

While Proposition 1 highlights the potential pitfalls from mistakenly applying the baseline

GIV estimator, Gabaix and Koijen (2020) also give guidance for estimating unit-specific

spillover coefficients under additional restrictions. Their Proposition 6 and Appendix D.9

present alternative procedures that require heterogeneity to depend on observables and for

the shock variance to be known respectively. In contrast, these restrictions are unnecessary

for RGIV.

4 Testing

In this section, I propose two tests derived from standard GMM results (Newey and McFadden,

1994): a test of over-identifying restrictions that evaluates the uncorrelatedness of idiosyn-

cratic shocks and a test that evaluates the homogeneous spillover coefficient condition of

Gabaix and Koijen (2020). For what follows, impose Assumption 1.

4.1 RGIV specification test

The uncorrelatedness of idiosyncratic shocks is directly testable when there are four or more

units, as the number of moment conditions exceeds the number of unit-specific spillover

coefficients. Recall that the RGIV estimator is a GMM estimator for moment function

g(rt,φ), which encodes the pairwise uncorrelatedness of idiosyncratic shocks. For n ≥ 4

countries, the number of moments exceeds the number of estimated parameters allowing

for the use of the Sargan–Hansen test. The null hypothesis H0: E[g(rt,φ0)] = 0 for true

parameter φ0 is rejected for large values of the J-statistic JT = T · Q̂T (φ̂RGIV ). Intuitively,

JT is large when one or more pairs of estimated idiosyncratic shocks are correlated.
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4.2 Spillover coefficient homogeneity test

Spillover coefficient homogeneity across units is not only a subject of potential substantive

interest—particularly given its role in the Gabaix and Koijen (2020) GIV estimator—but also

can be formally evaluated within the framework of RGIV. Since the null hypothesis of coef-

ficient homogeneity H0: φ1 = φ2 = ... = φn is a special case of RGIV’s unit-specific spillover

coefficients, H0 can be tested with the distance metric test. Here, estimator φ minimizes

Q̂T (φ) subject to the constraints of null hypothesis H0. Then, spillover coefficient homo-

geneity is rejected when the distance metric test statistic DMT = T (Q̂T (φ) − Q̂T (φ̂RGIV ))

is large since DMT
d−→ χ2

n−1 under the null hypothesis. A large value of DMT indicates that

the constraints of null hypothesis H0 bind.

5 Extensions to additional explanatory variables

Motivated by the requirements of empirical applications, this section discusses two extensions

that relax the condition of uncorrelated idiosyncratic shocks discussed in Section 3 through

observed and unobserved explanatory variables. I show that when observable time-varying

explanatory variables determine the shocks’ correlation structure, RGIV can be used after

residualizing the outcome variables with respect to these observables. When the correlation

structure is instead determined by unobserved factors with unknown loadings, the global

identification condition fails.

5.1 RGIV with observed explanatory variables

In practice, observable characteristics can determine the correlation structure among shocks

as described by the following two situations. First, the outcome variable could have unit-

specific exposures to a particular observed variable—take country-specific exposures to the

USD-EUR exchange rate in the Euro area sovereign yields example. Second, observable

characteristics could also be used to account for a correlation structure driven by unob-

served explanatory variables—like country-specific exposures to a “global financial condi-

tions” factor—so long as such unobserved factors are in the span of the observed explanatory

variables.

Observed variable xt (k × 1) affects outcome variable rit through a direct effect and

an indirect effect. Modifying Assumption 1(i), unit-specific coefficients βi determine the
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cross-sectional correlation of vit

rit = φirSt + β′
ixt + uit︸ ︷︷ ︸

vit

, xt ⊥⊥ uit, i = 1, . . . , n (5)

where uit is still idiosyncratic in the sense that uit is independent of ujt for i 6= j. The

orthogonality condition uit ⊥⊥ xt can be interpreted as a “selection-on-observables” assump-

tion; the cross-sectional correlation of vit is entirely determined by the observed explanatory

variables. Holding rSt and uit constant, βi can be interpreted as the direct effect of xt on rit.

Additionally, mediated through changes in rSt = 1
1−φS

[β′
Sxt + uSt],

φi

1−φS
βS determines the

indirect effect of xt on rit. Analogous to the discussion in Section 2.1, the indirect effect of a

change of xt on unit i is larger when units are on average sensitive to xt (through βS), unit

i is sensitive to spillovers (through φi), and when units are on average sensitive to spillovers

(through φS).

The spillover coefficients in in Equation 5 can be estimated by using RGIV after residu-

alizing the outcome variable rit with respect to observed variables xt. Residualizing purges

rit of the variation induced by the direct and indirect effects of xt on rit. Concretely, the

procedure has two steps:

1. Compute the residual ṙit of the regression of rit on xt.

2. Treating ṙit as data, estimate φ using the RGIV estimator described in Definition 1.

Conveniently, estimation uncertainty of the first step’s regression coefficients has no effect

on the asymptotic variance of the RGIV estimator in the second step. Thus, treating ṙit

as data in the second step produces valid standard errors for φ̂RGIV . See Appendix B.1 for

formal results.

5.2 Non-identification when explanatory variables are unobserved

In this section, I describe the tradeoff in assumptions between allowing spillover coefficient

heterogeneity/unknown shock variances and a factor structure for the shocks. I show that

global identification of unit-specific spillover coefficients is lost when a single unobserved

factor is included in the error term. Such a case is empirically relevant because there is

typically no a priori reason to believe that spillover coefficients are homogeneous across

units and because estimated latent factors are commonly used as control variables in the

applied GIV literature.

GIV regressions with estimated latent factors as control variables are ubiquitous in the ap-

plied GIV literature (Flynn and Sastry (2022); Gabaix and Koijen (2020, 2021); Camanho et al.
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(2022); Baumeister and Hamilton (2023); Adrian et al. (2022) among others). Typically, la-

tent factors are estimated using principal components on the demeaned outcome variable

before being included as control variables in the GIV regression. Such an approach is at-

tractive because it enables practitioners to apply GIV to applications where the correlations

between unit shocks are driven by a small number of latent factors. These estimated fac-

tors however are subject to measurement error, so their inclusion as control variables in

subsequent GIV regressions give rise to attenuation bias.

Banafti and Lee (2022) address this concern by extending GIV with homogeneous spillover

coefficients to a large time and panel dimension framework. When the size distribution of

units is very skewed (more skewed than Zipf’s law), the sampling uncertainty arising from

latent factors and loadings is negligible under their procedure. Homogeneity of spillover

coefficients across units is crucial for the procedure’s validity. When spillover coefficients

are heterogeneous, cross-sectionally demeaning each unit no longer differences away the (no

longer constant) contribution of spillovers. As a result, PCA estimates of the latent factors

are polluted by the presence of spillovers.

Given the empirical relevance of unit-level heterogeneity and latent factors, I consider

a heterogeneous spillover coefficient latent factor model. Taking n to be fixed, restrictions

on the skewness of the unit size distribution are unneeded. Investigating identification, I

augment Assumption 1(i) to include a single latent factor ft with unknown unit-specific

loading λi

rit = φirSt + λift + uit, λi 6= 0, ft ⊥⊥ uit, n ≥ 5 (6)

where the number of units n is fixed and time T → ∞. Factor ft is normalized so that

E(ft) = 0, E(f 2
t ) = 1, and λ1 > 0. Shocks uit are idiosyncratic in that they are independent

of latent factor ft and uit ⊥⊥ ujt for i 6= j. Then, extending the logic of the RGIV estimator

to the single factor case, the moment function between units i 6= j is

gfactor
ij (rt, θ) = (rit − φirSt)(rjt − φirSt) − λiλj

where θ = [φ′,λ′]′ for λ = [λ1, . . . , λn]′. gfactor
ij (rt, θ) can then be stored in moment vector

gfactor(rt, θ). When n ≥ 5, the number of moments (a total of n(n− 1)/2) is greater than or

equal to the number of parameters to be estimated (a total of 2n).

Lemma 2 (below) however shows that the population moment condition gfactor
0 (θ) =

E[g(r, θ)] has multiple roots, so the model described in Equation 6 is not identified.

Lemma 2. Consider Equation 6 and let θ0 be the true parameter. There exists θ̃ 6= θ0 such
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that gfactor
0 (θ̃) = 0.

Proof. See Appendix A.5.

The failure in the global identification condition comes from the assumptions of unknown

shock variances and unknown factor loadings. If instead shock variances and factor loadings

were taken to be known—mirroring Assumption 1 of Gabaix and Koijen (2020) and as is the

case for the proof of Lemma 1—then the unit-specific spillover coefficients are identified.5 In

the proof of Lemma 2, I show that factor loadings can compensate for incorrect guesses for

the spillover coefficient. To see this, let θ̃ = [φ̃′, λ̃′]′ be a candidate root to the population

moment condition. In the proof, I consider the set of solutions where the first unit’s spillover

coefficient and loading equal their true values (φ̃1 = φ1 and λ̃1 = λ1). I then show that a

subset of the population moment conditions imply that

φ̃k − φk = − λ1(1 − φS)

λ1λS + S1σ2
1

(λ̃k − λk), k ≥ 2.

In words, λ̃k can compensate for an incorrect spillover coefficient φ̃k 6= φk. Formally, the

proof shows that there is at least one θ̃ = θ0 such that gfactor
0 (θ̃) = 0. Moreover, θ̃ need

not be “close” to the true parameter, as there is no guarantee that maxi φ̃i ≥ mini φi or

mini φ̃i ≤ maxi φi. In this sense, φ̃ is potentially far from the true spillover coefficient φ0.

Lemma 2 also implies a tradeoff between modeling unit-level heterogeneity and allowing

for correlated shocks. Recall that Proposition 7 of Gabaix and Koijen (2020) shows that

a homogeneous spillover coefficient is identified when shocks admit a factor structure with

unknown loadings and if shock variances are homogeneous across units. In contrast, Lemma

2 shows that global identification is lost under unrestricted heterogeneity on spillover coef-

ficients and shock variances. Taken together, these results suggest that practitioners face a

tradeoff between two empirically-relevant models.

6 Application

Applying the robust granular instrumental variables (RGIV) methodology to the Euro area

sovereign yield spillovers application of a working paper version of Gabaix and Koijen (2020),

this section finds strong evidence of country-level heterogeneity in the spillovers of idiosyn-

cratic shocks.

5In a related case, Appendix B.4 shows that differencing RGIV moments can account for factor loadings
determined by unit-specific observables.
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Just as in Gabaix and Koijen (2020), the sample consists of daily data on 10-year zero

coupon yields from Bloomberg from September 1, 2009 to May 31, 2018 giving a total of

2283 observations. The included countries are Austria, Belgium, Finland, France, Germany,

Greece, Ireland, Italy, Netherlands, Portugal, Slovenia, and Spain. For the yield spread of

country i (relative to Germany) yit, the outcome variable rit is defined as rit = yit−yit−1

0.01+yi,t−1
just

as in Gabaix and Koijen (2020). Since shocks are linearly related to the outcome variable as

outlined in Assumption 1(i), rit is winsorized (over time) at the 0.5 and 99.5th percentiles.

Following Gabaix and Koijen (2020), size is time-varying and computed as “debt-at-risk”

Si,t−1 =
Bi,t−1yi,t−1∑
j

Bj,t−1yj,t−1
where Bi,t−1 is the outstanding government debt of country i.

Observed explanatory variables are included to account for unit-specific exposures to la-

tent aggregate shocks. In particular I include the STOXX 50 Volatility Index (differences),

the STOXX Europe 600 Index (growth), the EUR-USD exchange rate (growth), the United

States 10 Year Treasury yield (growth), BBB/Baa-10Y spread (differences), and the Euro-

pean Fama-French 5 factors (Fama and French, 2015). These observed explanatory variables

account for differential exposure of countries to uncertainty, exchange rates, equity prices,

and risk. All data are downloaded from Bloomberg.

Even with observed explanatory variables, well-documented regional correlations among

Europe’s core and periphery countries likely still drive correlations between shocks (Bayoumi and Eichengreen

1992). To address, I size-aggregate rit to form larger country blocks; even if shocks within

blocks are correlated, RGIV is still valid so long as shocks between blocks are uncorrelated.

Hence, uncorrelatedness between blocks is a weaker condition than uncorrelatedness between

countries. Specifically, I consider the following four blocks:

• Block 1 (Core): Austria, Belgium, Finland, France, Netherlands;

• Block 2 (Western periphery): Ireland, Portugal, and Spain;

• Block 3 (Eastern periphery): Greece and Italy;

• Block 4: Slovenia.

Block 1 includes countries typically classified as being members of the EU “core.” Blocks 2

and 3 contain countries typically classified as being members of the EU “periphery.” Block 4

contains Slovenia, which is typically left uncategorized on account of its distinct institutional

structure as a former member of Yugoslavia.

I report RGIV point estimates and standard errors for individual spillover coefficients.

Standard errors are computed using a HAC GMM weight matrix to account for the possible
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serial correlation of idiosyncratic shocks.6 Size-weighted spillover coefficients are constructed

using the Delta method, using the average block size over the estimation sample.

I also present GIV results based on the shock variance approximation and factor es-

timation procedures detailed in Section 5.3 of the July 2021 working paper version of

Gabaix and Koijen (2020). I include this procedure for comparison, as it is used in the

original application. This procedure approximates the variance of the shocks with Var(rit),

valid when spillovers are small. As a diagnostic for GIV instrument strength, the first stage

F -statistic is also reported.

I find strong evidence of spillovers in the aggregate and of spillover heterogeneity across

countries. In the preferred specification (Column 1 of Table 1), the null hypothesis of uncor-

related idiosyncratic shocks isn’t rejected suggesting that the RGIV moment conditions are

consistent with the data. Evidence of spillovers in the aggregate, the size-weighted spillover

coefficient is 0.54 (with a standard error of 0.08). Moreover, with a p-value of < 0.001 for the

spillover coefficient homogeneity test, the null hypothesis of spillover coefficient homogeneity

is rejected at conventional significance levels. Turning to individual spillover coefficients, the

spillover coefficient for the western periphery block (0.83) is more than twice that of the core

countries (0.40).

The qualitative features of the preferred specification are robust to omitting observed

explanatory variables and using an estimator that is efficient under higher-order dependence

among shocks. Omitting explanatory variables, Column 2 of Table 1 shows spillover coef-

ficient heterogeneity across blocks. Relative to the preferred specification, the estimated

size-weighted spillover coefficient is slightly larger (at 0.63). Recall that the RGIV estima-

tor is efficient under the independence of idiosyncratic shocks, but isn’t guaranteed to be

efficient under the weaker condition of idiosyncratic shock uncorrelatedness.7 To address,

Column 3 shows the results of a “higher-order efficient” estimator, which uses the procedure

outlined in Remark 5 of Section 3.2. The point estimates and standard errors are nearly iden-

tical, suggesting that higher order dependence of idiosyncratic shocks play a minor role in

this application. The spillover coefficient estimated with GIV procedure featured in a work-

ing paper version of Gabaix and Koijen (2020) is comparable to the size-weighted spillover

coefficient computed with RGIV, but is unable to speak to country-level heterogeneity. Col-

umn 4 of Table 1 presents results of the baseline GIV methodology applied to this section’s

core-periphery-aggregated panel (distinct from the country-level panel of Gabaix and Koijen

(2020)). The spillover coefficient of 0.57 is close to the size-aggregated spillover coefficient

computed in the preferred RGIV specification.

6Specifically, a Newey-West kernel with the Lazarus et al. (2018) truncation parameter rule of 1.3
√

T .
7For example, a shared volatility term would induce dependence of higher order moments.
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Preferred No controls Higher-order efficient 1-factor GIV
RGIV results:
φS 0.54 0.63 0.54

(0.08) (0.07) (0.08)
φIRL,PRT,ESP 0.83 0.86 0.83

(0.06) (0.05) (0.06)
φGRC, ITA 0.44 0.56 0.44

(0.16) (0.13) (0.16)
φCore 0.39 0.47 0.40

(0.03) (0.02) (0.03)
φSVN 0.33 0.49 0.33

(0.06) (0.05) (0.05)
φGIV 0.56

(0.02)
Tests (p-values):

Specification 0.950 0.923 0.935
Homogeneity <0.001 <0.001 <0.001

First-stage F -statistic 592

Table 1: Spillover coefficient estimation results. RGIV coefficient estimates for φS , φIRL,PRT,ESP, φGRC, ITA,
φCore and φSVN are listed above standard errors, which are provided in parentheses. p values are provided in
the bottom section of the table for the specification test and parameter homogeneity tests. Estimates for the
GIV spillover coefficient and standard error are listed in the φGIV row, and the the instrumental variables
first-stage F -statistic is given in the table’s last row. See the main text for details on the table’s columns.
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Section B.2 gives additional RGIV results under alternative winsorizations, the more

widely-used Andrews (1991) truncation parameter, omitting the Fama-French factors as

observed explanatory variables, and alternative choices of country blocking. Section B.2 also

contains results for the 0-factor and 2-factor GIV specifications.

Summarizing, RGIV finds strong evidence of country-level differences in sovereign yield

spillovers. In response to a 1% increase in the size-weighted relative yield spread, the relative

yield spread of “core” countries increases by 0.4% compared to an increase of 0.8% for

countries in the western “periphery.” Substantively, these estimates point to the importance

of understanding the role of country-level characteristics in the heterogeneous propagation

of idiosyncratic shocks during sovereign debt crises.

7 Simulation study

I close by showing that RGIV has good finite sample performance in simulation using four

DGPs based on the preferred specification studied in Section 6. In contrast, I show that

two versions of the GIV procedures—the “feasible” GIV procedure (featured in this paper’s

application application) and “oracle” GIV procedure that takes idiosyncratic shock variances

σ2
i to be known—can severely under-cover under spillover coefficient heterogeneity.

Setup The “homogeneous spillovers” DGP is loosely based on the preferred specification of

Section 6. Under spillover coefficient homogeneity across units, the DGP serves as a baseline,

as both the oracle GIV and RGIV estimators are correctly specified. For n = 4 units and a

sample length of T = 2283, the model parameters are below:

φ =
[
0.54 0.54 0.54 0.54

]′
, σ =

[
0.014 0.014 0.014 0.014

]′

S =
[
0.29 0.56 0.14 0.01

]′
.

Having established an environment for which both the oracle GIV and RGIV estimators

are valid, I study three additional DGPs that deviate from the homogeneous spillovers DGP.

These illustrate the finite sample properties of RGIV and GIV. First, the “coefficient outlier”

DGP takes the homogeneous spillovers specification and sets the spillover coefficient of the

fourth unit to 0.75. Second, the “shock variance outlier” DGP takes the homogeneous

spillovers specification and sets the shock standard deviation of the first unit to 0.03. Third,

the “application” DGP allows for heterogeneous spillover coefficients and shock variances by

assigning them to be the estimated values from the application’s preferred specification.

For each DGP, I consider results from the RGIV estimator, “feasible” GIV estima-
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tor, and “oracle” estimator. For the RGIV estimator, I compute confidence intervals for

the spillover coefficients of individual units, size-weighted spillover coefficients, and equal-

weighted spillover coefficients. These confidence intervals highlight how RGIV can be used

for researchers interested in individual spillover coefficients and for those interested in a sin-

gle, aggregated parameter. The “feasible” GIV estimator is computed using the Var(rit) ≈
Var(uit) approximation (valid when spillovers are small) while the “oracle” GIV estimator

is computed as if the true idiosyncratic shock variance Var(uit) were known. Both GIV

estimators are included to show the practical implications of mistakenly assuming spillover

coefficient homogeneity across units. The feasible GIV estimator, in particular, is included

to evaluate the approximation Var(rit) ≈ Var(uit) and for completeness (it is featured in the

application section).

A conservative notion of coverage is used for the GIV estimators. Since the GIV es-

timators require spillover coefficient homogeneity across units, I report the proportion of

GIV confidence intervals that contain any positive-weighted average of potentially heteroge-

neous spillover coefficients—measured as the proportion of GIV confidence intervals with a

nonempty intersection with the closed interval [min1≤i≤n φi,max1≤i≤n φi].

Results While the empirical coverage is near the nominal level for RGIV, feasible RGIV

can severely under-cover. Table 2 shows that nearly 95% of the confidence intervals for

φ̂S and φ̂E contain the true estimands φS and φE in all four DGPs. In contrast, the true

spillover coefficient is contained in none of the feasible GIV confidence intervals in the ho-

mogeneous spillovers DGP. Considering that the true coefficient is contained in 95% of the

oracle estimator confidence intervals, together these results suggest that the approximation

Var(rit) ≈ Var(uit) is inappropriate for this DGP.

Under spillover coefficient heterogeneity, the GIV estimators can substantially under-

cover—even with the conservative notion of coverage featured in this simulation study. For

the coefficient outlier DGP, none of the feasible GIV confidence intervals contain any positive

weighted average of heterogeneous spillovers, compared to 15% for the oracle estimator.

Hence, for certain DGPs, mistakenly assuming spillover coefficient homogeneity and applying

versions of the baseline GIV estimator can result in unreliable inference.

Evaluating the properties of the testing procedures featured in Section 4, the empirical

size of the RGIV specification and coefficient homogeneity tests are near their nominal level.

The empirical rejection rate of the coefficient homogeneity test is 4.2% and 5.2% for the

homogeneous spillovers and variance outlier DGPs respectively, where the null hypothesis

of spillover coefficient homogeneity across units is true. When spillover coefficients are not

homogeneous, as is the case under the elasticity outlier and application DGPs, the null hy-
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DGP RGIV GIV Testing (α = 0.05)

φ̂S φ̂E Feasible Oracle Spec. Homog.
Homogeneous spillovers 0.94 0.97 0 0.95 0.054 0.042

(0.12) (0.038) (0.058) (0.046)
Coefficient outlier 0.94 0.97 0 0.15 0.047 0.998

(0.12) (0.037) (0.078) (0.071)
Variance outlier 0.97 0.94 0.0068 0.95 0.045 0.052

(0.045) (0.067) (0.037) (0.033)
Application 0.95 0.97 1.00 1.00 0.064 0.996

(0.14) (0.052) (0.083) (0.10)

Table 2: Simulation results (5000 simulations, T = 2283, 95% confidence intervals). Empirical coverage
probabilities are listed above median confidence interval lengths, which are provided in paretheses. RGIV:
Coverage probabilities are computed as the proportion of confidence intervals containing the estimand (φS

for φ̂S and φE for φ̂E). GIV: Coverage probabilities are computed as the proportion of confidence intervals
containing any positive-weighted average of φi for the feasible and oracle GIV estimators. Computed at the
5% level, the RGIV specification test (Spec.) and coefficient homogeneity test (Homog.) are provided in the
final two columns.

pothesis of homogeneous coefficients is rejected in more than 99% of Monte Carlo replications.

Turning to the specification test, note that the RGIV framework is correctly specified in all

four DGPs. At worst, the null hypothesis of idiosyncratic shock uncorrelatedness is rejected

in 6.4% of Monte Carlo replications under the application DGP.

The RGIV estimator presents a modest (if any) power tradeoff relative to the oracle

GIV estimator, and unit-specific RGIV spillover coefficients have good coverage properties

despite applying to a more general environment. In the homogeneous spillovers application,

the equal-weighted RGIV spillover coefficient has a comparable median confidence interval

length (0.038) to that of GIV (0.046).8 Turning to unit-specific spillover coefficients, Table

3 shows that the empirical coverage across all four DGPs and RGIV spillover coefficients is

near 0.95.

8 Discussion

Gabaix and Koijen (2020) introduces granularity-based identification, a substantial step for-

ward for credible spillover estimates in macroeconomics and finance. Its baseline granular in-

strumental variables procedure however requires strong assumptions—namely homogeneous

spillovers across units, homogeneous shock variances, skewed unit size, and idiosyncratic

8In general, researchers interested in any positive-weighted average of potentially heterogeneous spillover
coefficients could estimate unit-specific spillover coefficients using RGIV and compute the weights that min-
imize the confidence interval length of the resulting aggregated estimator.
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DGP φ1 φ2 φ3 φ4

Homogeneous spillovers 0.96 0.95 0.95 0.95
(0.16) (0.3) (0.075) (0.058)

Coefficient outlier 0.95 0.95 0.95 0.94
(0.16) (0.3) (0.075) (0.058)

Variance outlier 0.95 0.96 0.95 0.95
(0.43) (0.18) (0.046) (0.044)

Application 0.96 0.95 0.96 0.95
(0.12) (0.32) (0.091) (0.14)

Table 3: Simulation results for the RGIV unit-specific spillover coefficients (5000 simulations, T = 2283, 95%
confidence intervals). Empirical coverage probabilities are listed above median confidence interval lengths,
which are provided in paretheses.

shocks (after accounting for common factors with known loadings). I build on this innovative

approach by showing that unit-specific spillover coefficient heterogeneity with heterogeneous

(and unknown) shock variances can jointly be accounted for without further restrictions. My

estimator, called robust granular instrumental variables, also allows for homogeneous unit

sizes unlike GIV. Intuitively, my approach uses internally estimated individual idiosyncratic

shocks as instruments. I give results on identification and inference, showing that the required

GIV assumption of coefficient homogeneity is directly testable. Relaxing the idiosyncratic

shock assumption, I highlight an tradeoff: practitioners must choose between allowing un-

restricted unit-level heterogeneity and a general shock covariance structure. Studying Euro

zone sovereign yields, I find strong evidence of country-level heterogeneity in spillovers. I

find that my proposed estimator has good finite sample properties through simulation.

There are several directions for future work. First, my approach builds on the baseline

framework proposed by Gabaix and Koijen (2020). Here, an individual unit’s outcome is

determined by the size-weighted aggregate outcome. A structure where spillover responses

are allowed to differ by the shock’s source could be of interest for empirical work. Second,

while the core-periphery structure of Euro area countries serves as a natural basis for group-

ing units in the empirical application, grouping could be automated. Third, as discussed

in Section 5.2, practitioners face a tradeoff between unrestricted unit-level heterogeneity

in spillover coefficients and correlated shocks. Further work on alternative economically-

motivated conditions that preserve global identification would be of considerable interest to

applied users.
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A Proofs

A.1 Proof of Theorem 1

I will begin by showing that the hypotheses of Theorem 3.1 of Pakes and Pollard (1989) are

satisfied by Assumption 1. Doing so gives consistency of a GMM estimator with moment

function g(rt,φ) and the weight matrix taken to be the identity matrix. To do so, I proceed

by verifying the (more stringent) conditions of Newey and McFadden (1994) Theorem 2.6,

taking the weight matrix as the identity matrix. I close by showing that the constructed

weight matrix Ŵ (φ) satisfies Lemma 3.4 of Pakes and Pollard (1989), implying consistency

of the RGIV estimator.

Below, I verify the conditions of Theorem 2.6 of Newey and McFadden (1994) for an

identity weight matrix In(n−1)/2 (preserving the same numbering as the original reference):

i. Since the weight matrix Ŵ = In(n−1)/2 is taken to be the identity matrix, trivially

Ŵ
p−→ In(n−1)/2. Lemma 1 shows E[g(rt,φ)] = 0 if and only if φ = φ0.

ii. Parameter space Φ is compact from Assumption 1(iii).

iii. By inspection, g(rt,φ) is continuous at each φ with probability 1.

iv. Take φ̃ ∈ Φ. Then, consider the element of g(rt, φ̃) corresponding to the orthogonality

of shocks to units i and j. Then,

(rit − φ̃irSt)(rjt − φ̃jrSt) = [uit + (φi − φ̃i)rSt][ujt + (φj − φ̃j)rSt] (Assumption 1(i))

= [uit + (φi − φ̃i)
uSt

1 − φS

][ujt + (φj − φ̃j)
uSt

1 − φS

].

Thus, the moment condition is quadratic in idiosyncratic shocks. Since E[‖ut‖2] < ∞,

E[supφ∈Φ
‖g(r,φ)‖] < ∞.

Since the more stringent conditions of Newey and McFadden (1994) Theorem 2.6 are

satisfied, the conditions of Theorem 3.1 of Pakes and Pollard (1989) are also satisfied.

Since Ŵ (φ) is positive definite, it can be decomposed as Ŵ (φ) = Â(φ)′Â(φ) where

Â(φ) =
√
Ŵ (φ) where

√· represents the element-wise square root operator. Next, proceed

by verifying the conditions of Lemma 3.4 of Pakes and Pollard (1989) (preserving the same

numbering as the original reference). Conditions (i) and (ii) follow from the law of large

numbers, continuous mapping theorem, and 0 < σ2
i < ∞. Hence, RGIV is consistent.
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A.2 Proof of Theorem 2

I will first show that the hypotheses of Theorem 3.3 of Pakes and Pollard (1989) are sat-

isfied by Assumption 1. Doing so gives asymptotic normality of a GMM estimator with

moment function g(rt,φ) and the weight matrix taken to be the identity matrix. I be-

gin by verifying the (more stringent) conditions of Newey and McFadden (1994) Theorem

3.4 where the weight matrix is taken to be the identity matrix. Then, I close by show-

ing that the estimator with weight matrix Ŵ (φ) satisfies Lemma 3.5 of Pakes and Pollard

(1989), implying that the RGIV estimator is asymptotically normal with asymptotic variance

(G′WG)−1G′WΣWG(G′WG)−1.

Below, I verify the conditions of Newey and McFadden (1994) Theorem 3.4. Before doing

so, I pre-compute ∇θg(rt, φ̃) for φ̃ ∈ Φ

∇θg(rt, φ̃) =




M2

M3

...

Mn




Mi =



0(n−i+1)×(i−2)

−rSt(rit − φ̃irSt)

−rSt(r(i+1)t − φ̃i+1rSt)
...

−rSt(rnt − φ̃nrSt)

−In−i+1 · rSt(r(i−1)t − φ̃i−1rSt)




Also, for more compact notation, let K =
∑n

i=1 S
2
i σ

2
i where σ2

i is given by Assumption

1(ii). Moreover, the hypotheses of Newey and McFadden (1994) Theorem 2.6 are satisfied

in Theorem 1. I check the hypotheses of Theorem 3.4 of Newey and McFadden (1994) for

identity weight matrix Ŵ = In(n−1)/2 (preserving the numbering of the original reference):

i. By Assumption 1(iii), φ0 ∈ interior(Φ).

ii. Inspecting the functional form of ∇θg(r, φ̃), g(r, φ̃) is continuously differentiable in a

neighborhood N of φ0 with probability approaching 1.

iii. E[g(r,φ0)] = 0 is shown in Lemma 1. The square of the shock orthogonality condition

between countries i and j is bounded

E[u2
itu

2
jt]

2 ≤ E[u4
it]E[u4

jt] < ∞.

The Cauchy-Schwarz inequality gives the first inequality. The second inequality follows
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from the bounded fourth moment condition in Assumption 1(ii). Thus E[‖g(r,φ0)‖2]

is finite.

iv. Fix i ∈ 1, ..., n and φ̃ ∈ Φ. Then

‖ − rSt(rit − φ̃irSt)‖ = ‖ − rSt

(
uit + (φi − φ̃i)rSt

)
‖ (Assumption 1(i))

≤ ‖rStuit‖ + ‖φi − φ̃i‖ · ‖r2
St‖

= ‖ uSt

1 − φS

uit‖ + ‖φi − φ̃i‖ · ‖
( uSt

1 − φS

uit

)2‖.

The above expression is quadratic in idiosyncratic shocks uit. From Assumption 1(ii),

E[utu
′
t] exists and E[supφ∈Φ ‖−rSt(rit−φ̃irSt)‖] < ∞. Hence, E[supφ∈Φ ‖∇φg(r,φ)‖] <

∞.

v. To showG′G is full rank, it suffices to show that rank(G) = n. RecallG = E[∇φg(rt,φ0)].

Since E[−rSt(rit − φirSt)] = E[rStuit] = −E

[
uStuit

1−φS

]
= − Siσ2

i

1−φS
, G can be explicitly com-

puted:

G =




E(M2)

E(M3)
...

E(Mn)



, E(Mi) = − 1

1 − φS



0(n−i+1)×(i−2)

Siσ
2
i

Si+1σ
2
i+1

...

Snσ
2
n

In−i+1 · Si−1σ
2
i−1



.

To show G is full rank, consider the n×n submatrix G1:n,1:n formed by taking the first

n rows of G. Then, its transpose is

G′
1:n,1:n = − 1

1 − φS




S2σ
2
2 S3σ

2
3 . . . Snσ

2
n 0

S1σ
2
1In−1

S3σ
2
3

S2σ
2
2

0
...

0




.
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The determinant of G′
1:n,1:n can be computed by applying elementary row operations:

det(G′
1:n,1:n) = det




− 1

1 − φS




S2σ
2
2 S3σ

2
3 . . . Snσ

2
n 0

S1σ
2
1In−1

S3σ
2
3

S2σ
2
2

0
...

0







= (−1)n−1 det




− 1

1 − φS




S1σ
2
1In−1

S3σ
2
3

S2σ
2
2

0
...

S2σ
2
2 S3σ

2
3 . . . Snσ

2
n 0







= (−1)n−1 det




− 1

1 − φS




S1σ
2
1In−1

S3σ
2
3

S2σ
2
2

0
...

S2σ
2
2 S3σ

2
3 0 . . . 0 0







= (−1)n−1 det




− 1

1 − φS




S1σ
2
1In−1

S3σ
2
3

S2σ
2
2

0
...

0 0 0 . . . 0 −S3σ2
3

S1σ2
1
S2σ

2
2 − S2σ2

2

S1σ2
1
S3σ

2
3







= (−1)n−1
(

− 1

1 − φS

)n[
S1σ

2
1

]n−1[
− S3σ

2
3

S1σ
2
1

S2σ
2
2 − S2σ

2
2

S1σ
2
1

S3σ
2
3

]

= 2
(

1

1 − φS

)n

(S1σ
2
1)n−2S2S3σ

2
2σ

2
3 6= 0.

In line 2, the first row is shifted to the matrix’s final row. In line 3, rows are combined

so that the elements 3 to n − 1 of the final row are canceled. In line 4, rows are

combined so that the first two elements of the final row are canceled. The determinant

in line 5 is the product of the matrix’s diagonal elements because the matrix is upper

triangular. Since 1 − φS 6= 0, Si > 0, and σ2
i > 0, the determinant is not zero. Hence,
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submatrix G′
1:n,1:n is full rank, which immediately implies G is also full rank:

n = rank(G′
1:n,1:n) ≤ rank(G) ≤ min(

n(n− 1)

2
, n) = n.

Since the more stringent conditions of Newey and McFadden (1994) Theorem 3.4(i)-(v)

are satisfied, the conditions of Theorem 3.3 of Pakes and Pollard (1989) are also satisfied.

Continue to verifying the conditions of Lemma 3.5 of Pakes and Pollard (1989). Recall from

the proof of Theorem A.1 that the weight matrix can be decomposed as Ŵ (φ) = Â(φ)′Â(φ)

where Â(φ) = diag
(√

1
T

∑T
t=1 g(rt,φ)◦2

)−1

for element-wise square root operator
√·. From

the continuous mapping theorem and law of large numbers,

Â(φ0)
p−→ diag(σ1σ2, . . . , σ1σn, σ2σ3, . . . , σn−1σn) = A.

Let {δn} be a sequence of positive numbers that converges to zero. Then,

sup
‖φ−φ0‖<δn

‖Â(φ) − A‖ = op(1)

from continuity of the map from φ to Â(φ) at φ = φ0. Hence, the RGIV estimator is

asymptotically normal with asymptotic variance (G′WG)−1G′WΣWG(G′WG)−1 for W =

A(φ0)
′A(φ0) = diag(σ2

1σ
2
2, . . . , σ

2
1σ

2
n, σ

2
2σ

2
3, . . . , σ

2
n−1σ

2
n).

A.3 Proof of Proposition 1

Before computing the GIV estimand, E[(uSt − uEt)uEt], E[ztuEt], and E[(rSt − rEt)rSt] are

precomputed below:

E[(uSt − uEt)uEt] =
1

n

n∑

i=1

= E

[( n∑

i=1

(Si − 1

n
)uit

) 1

n

n∑

i=1

uit

]
=

1

n

n∑

i=1

(Si − 1

n
)σ2 = 0.

E[ztuEt] = E[(rSt − rEt)uEt] = E[(φS − φE)rStuEt + (uSt − uEt)uEt]

= (φS − φE)E[rStuEt] =
φS − φE

1 − φS
E[uStuEt]

=
φS − φE

1 − φS

1

n
σ2.

E[(rSt − rEt)rSt] = (φS − φE)E[r2
St] + E[rSt(uSt − uEt)]

=
(φS − φE)σ2 ∑n

i=1 S
2
i

(1 − φS)2
+

σ2

1 − φS
[

n∑

i=1

S2
i − 1

n
].
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Combining, the GIV estimand is

E[ztrEt]

E[ztrSt]
=

E[zt(φErSt + uEt)]

E[ztrSt]
= φE +

E[ztuEt]

E[ztrSt]

= φE +
φS − φE

n

1
φS−φE

1−φS

∑n
i=1 S

2
i − 1

n
+

∑n
i=1 S

2
i

The first line follows from Assumption 1(i).

A.4 Proof of Lemma 1

I prove Lemma 1 under the weaker condition that the covariance of shocks i and j are

known. Explicitly, the below proof will use Assumption 1 after replacing Condition (ii) with

Condition (ii’):

Condition (ii’). For σ2
i > 0, shocks ut are i.i.d. with moments E(ut) = 0, E(u2

it) = σ2
i , and

E(‖ut‖4) < ∞. Moreover, E(uitujt) = µij for known µij.

Take φ̃ ∈ Φ. The moment condition corresponding to the idiosyncratic shocks of units i

and j

µij = E[(rit − φ̃irSt)(rjt − φ̃jrSt)]

= E[((φi − φ̃i)rSt + uit)((φj − φ̃j)rSt + ujt)] (Assumption 1(i))

= (φi − φ̃i)E[rStujt] + (φj − φ̃j)E[rStuit] + (φi − φ̃i)(φj − φ̃j)E[r2
St] + µij . (7)

Rearranging, the above display implies

φi − φ̃i = − (φj − φ̃j)E[rStuit]

E[rStujt] + (φj − φ̃j)E[r2
St]

and φk − φ̃k = − (φ1 − φ̃1)E[rStukt]

E[rStu1t] + (φ1 − φ̃1)E[r2
St]

(8)

for k > 1. Substituting the above display into Equation 7 and rearranging gives

0 =
(φ1 − φ̃1)E[rStuit]E[rStujt]

E[rStu1t] + (φ1 − φ̃1)E[r2
St]

{
−2 +

(φ1 − φ̃1)E[r2
St]

E[rStu1t] + (φ1 − φ̃1)E[r2
St]

}
. (9)

Equation 9 equals zero when either the first or second terms equal zero. Beginning with

the first case, the first multiplicative term equals zero when φ̃1 = φ1. Applying Equation 8,

φ̃k = φk. Thus, the first case corresponds to the true solution φ̃ = φ.
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Focusing on the second case, the second multiplicative term of Equation 9 equals zero

when

0 = −2 +
(φ1 − φ̃1)E[r2

St]

E[rStu1t] + (φ1 − φ̃1)E[r2
St]
.

Rearranging terms and substituting into Equation 8 implies

φ̃S = φ1 − φ̃1 = −2
E[rStu1t]

E[r2
St]

and φk − φ̃k = −2
E[rStukt]

E[r2
St]

for k > 1.

After taking a size-weighted sum of φ̃k,

n∑

i=1

Siφ̃i = φS + 2(1 − φS) = 1 + (1 − φS) > 1.

The final inequality follows from the φS < 1 condition from Assumption 1(i). In words, the

second multiplicative term of Equation 9 equals zero for a value of φ̃ that is outside of the

parameter space.

Hence, the only solution to E[g(rt, φ̃)] = 0 is φ = φ0.

A.5 Proof of Lemma 2

Let the true parameter values be given by θ = [φ′,λ′]′. Will show that the system of

equations given by the moment conditions doesn’t admit a unique solution. That is, it need

not be true that θ̃ = θ.

The size-weighted outcome variable can be written as idiosyncratic shocks and and the

common factor

rSt = φSrSt + λSft + uSt =
1

1 − φS
[λSft + uSt].

For units i 6= j, the moment condition can be written as

λ̃iλ̃j = E

{
[rit − φ̃irSt][rjt − φ̃jrSt]

}

= E

{
[(φi − φ̃i)rSt + λift + uit][(φi − φ̃j)rSt + λjft + ujt]

}

= (φi − φ̃i)(φj − φ̃j)
[
λ2

S +
∑n

k=1 S
2
kσ

2
k

1 − φS

]2

+ (φi − φ̃i)λj
λS

1 − φS

+ (φj − φ̃j)λi
λS

1 − φS
+ (φi − φ̃i)

Sjσ
2
j

1 − φS
+ (φj − φ̃j)

Siσ
2
i

1 − φS
+ λiλj (10)
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I substitute rit for the true DGP in the second line. Clearly, one solution to the above system

is θ̃ = θ.

Next, guess that another solution satisfies the restrictions φ̃1 = φ1 and λ̃1 = λ1. Moti-

vated by this guess, φk for k > 1 can be expressed in terms of φ1

φk − φ̃k =
λ̃kλ̃1 − λkλ1 − (φ1 − φ̃1)

[
λkλS+Skσ2

k

1−φS

]

φ1−φ̃1

(1−φS)2K +
λ1λS+S1σ2

1

1−φS

= λ1(1 − φS)
λ̃k − λk

λ1λS + S1σ2
1

. (11)

The final equality uses the restrictions φ̃1 = φ1 and λ̃1 = λ1. Then, substituting Equation

11 into Equation 10 gives

λ̃iλ̃j = K0(λ̃i − λi)(λ̃j − λj) +Kj(λ̃i − λi) +Ki(λ̃j − λj) + λiλj , (12)

storing constants as Kj =
λ1(λjλS+Sjσ2

j
)

λ1λS+S1σ2
1

for j > 1 and K0 =
λ2

1K

(λ1λS+S1σ2
1)2 .

Consider the guess λ̃j =
λj−2Kj+K0λj

K0−1
. Continue by verifying that the guess satisfies

Equation 12. Expanding, the left-hand side can be written as

LHS = λ̃iλ̃j =
2K0λiλj − 2K0Kjλi − 2K0Kiλj + 4KiKj − 2Kjλi − 2Kiλj + λiλjK

2
0 + λiλj

(K0 − 1)2
.

Noting that λ̃j − λj = 2
λj−Kj

K0−1
, the RHS of Equation 12 can be written as

RHS =
1

(K0 − 1)2
{4K0(λi −Ki)(λj −Kj) + 2Kj(λi −Ki)(K0 − 1)

+ 2Ki(λj −Kj)(K0 − 1) + λiλj(K0 − 1)2}

=
1

(K0 − 1)2
{2K0λiλj − 2K0Kjλi − 2K0Kiλj + 4KiKj − 2Kjλi − 2Kiλj

+ λiλjK
2
0 + λiλj} = LHS.

B Additional results

B.1 RGIV with observed explanatory variables

This section contains formal results for the RGIV model with observed explanatory variables.

Assumption 2 (below) establishes conditions necessary for identification, consistency, and

asymptotic normality. Assumption 2 extends Assumption 1 to include control variables xt

that are independent of idiosyncratic shocks uit. In the derivations that follow, it will be

convenient to reparametrize the coefficient on the control variables as ψi = βi + φi

1−φS
βS.
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Then, store the re-parametrized coefficients in vector ψ = [ψ′
1, . . .ψ

′
n]′ in vector θ = [φ′,ψ′]′

and its corresponding parameter space as Θ.

Assumption 2. (Baseline model)

(i) Model: For n ≥ 3 units, let fixed sizes Si ∈ (0, 1) sum to 1. Outcome rt = [r1t, ..., rnt]
′

responds to the size-aggregated outcome rSt according to spillover coefficient φi, co-

efficients βi (k × 1), observed control variables xt (k × 1), and unobserved shocks

ut = [u1t, u2t, ..., unt]
′

rit = φirSt + β′
ixt + uit, ∀i = 1, ..., n, φS < 1.

(ii) Moments: For σ2
i > 0, shocks ut are i.i.d. with moments E(ut) = 0, E(utu

′
t) =

diag(σ2
1, ..., σ

2
n), E(‖ut‖4) < ∞. Moreover, uit ⊥⊥ ujt for i 6= j. E(xtx

′
t) = ΣXX for

positive definite ΣXX and xt ⊥⊥ uit.

(iii) Parameter space: For spillover coefficient φ = [φ1, . . . , φn]′, store parameters in

θ̌ = [φ′,β′
1, . . . ,β

′
n]′. Then, the true parameter θ̌0 is in the interior of parameter space

Θ̌. Θ̌ is compact and for any
ˇ̃
θ ∈ Θ̌, φ̃S < 1.

Definition 2 (below) extends the RGIV estimator to include observed explanatory vari-

ables. Step 1 estimates the total effect of control variables xt on the outcome rit. Step 2

writes the moment uncorrelatedness condition after subtracting the variation induced by the

observed explanatory variables. See Section 5.1 for intuition.

Definition 2. For outcome variable rt = [r1t, . . . , rnt]
′, store data zt = [r′

t,x
′
t]

′. Let ui(zt,φ;ψ) =

(rit −ψ′
ixt) − φi(rSt −ψ′

Sxt) for i = 1, ..., n. The moment function gc(zt,φ;ψ) is

gc(zt,φ;ψ) = [u1(zt,φ;ψ)u2(zt,φ;ψ), . . . , u1(zt,φ;ψ)un(zt,φ;ψ),

u2(zt,φ;ψ)u3(zt,φ;ψ), . . . , un−1(zt,φ;ψ)un(zt,φ;ψ)]′.

Let the sample weight matrix Ŵ be defined as

Ŵ = diag
( 1

σ̂2
1σ̂2

2

, . . . ,
1

σ̂2
1 σ̂2

n

,
1

σ̂2
2 σ̂2

3

, . . . ,
1

σ̂2
n−1σ̂2

n

)

where σ̂2
i is a consistent estimator of idiosyncratic shock variances σ2

i for i = 1, . . . , n. Then

the robust granular instrumental variables estimator with observed explanatory

variables is characterized as the following two step estimator:

1. For each i = 1, . . . , n, ψ̂Step 1
i = ( 1

T

∑T
t=1 xtx

′
t)

−1( 1
T

∑T
t=1 xtrit).
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2. For Q̂T (φ; ψ̂Step 1) =
[

1
T

∑T
t=1 g

c(zt,φ; ψ̂Step 1)
]′

Ŵ
[

1
T

∑T
t=1 g

c(zt,φ; ψ̂Step 1)
]
, φ̂RGIV,c =

arg minφ:φS<1 Q̂T (φ; ψ̂Step 1).

For brevity, the formal results rely on straightforward extensions of the Newey and McFadden

(1994) GMM identification, consistency, and asymptotic normality results as detailed in Ap-

pendix B.3 to allow for the first step estimation of a nuisance parameter. Note that the

two-step estimation results of Newey and McFadden (1994) (Section 6) cannot be directly

applied since there are potentially more moments than estimated parameters. Alternatively,

the estimator described in Definition 2 could be defined using a continuously updating GMM

objective function in the second step. The procedure could be formalized by modifying the

more general results of Pakes and Pollard (1989) to accommodate a first-step estimator.

Lemma 3 (below) establishes that the first step estimator ψ̂Step 1 is consistent and Op(1).

Lemma 4 establishes identification of spillover coefficients φ. Theorems 3 and 4 give consis-

tency and asymptotic normality of the RGIV with observed explanatory variables estimator

φ̂RGIV,c.

Lemma 3. Impose Assumption 2. As T → ∞, ψ̂Step 1
i

p−→ ψi and
√
T (ψ̂Step 1

i −ψi) = Op(1).

Proof. Since 0 = E[xt(rit −ψ′
ixt)] = E[xtuit] = 0 and E[xtx

′
t] is full rank, the OLS estimator

ψ̂
Step 1
i is consistent. Assumption 2(ii) (that E(utu

′
t) = diag(σ2

1 , . . . , σ
2
n) and E(xtx

′
t) full

rank) implies ψ̂Step 1
i is asymptotically normal so

√
T (ψ̂Step 1

i −ψi) = Op(1).

Lemma 4 (Identification with observed explanatory variables). Impose Assumption 2. For

gc
0(φ) = E[gc(zt,φ;ψ0)], g

c
0(φ0) = 0 for the true parameter φ0 and gc

0(φ̃) 6= 0 for φ̃ ∈ Φ

such that φ̃ 6= φ0.

Proof. The result immediately follows after applying Lemma 1 to ṙit = rit −ψ′
ixt.

Theorem 3 (Consistency of RGIV with observed explanatory variables). Impose Assump-

tion 2. The RGIV estimator with observed explanatory variables is consistent φ̂RGIV,c p−→ φ0

for the true parameter φ0 as T → ∞.

Proof. Verify the conditions of Theorem 5. Condition (i) follows from Lemma 4 and Lemma

5. Condition (ii) follows from Assumption 2(iii). Condition (iii) follows by inspection of

function gc(zt,φ,γ). Condition (iv) follows from Assumption 2(ii).

Theorem 4. Impose Assumption 1. The RGIV estimator with observed explanatory vari-

ables is asymptotically normal

√
T (φ̂RGIV,c − φ0)

d−→ N(0, (G′WG)−1G′WΣWG(G′WG)−1)
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for RGIV population weight matrix W = diag( 1
σ2

1σ2
2
, . . . , 1

σ2
1σ2

n
, 1

σ2
2σ2

3
, . . . , 1

σ2
n−1σ2

n
), moment co-

variance matrix Σ = E[gc(rt,φ0;ψ0)g
c(rt,φ0;ψ0)

′] and G = E[∇φg
c(rt,φ0;ψ0)] as T → ∞.

Proof. Verify the conditions of Theorem 6. The hypotheses for Theorem 5 are satisfied.

Lemma 3 implies
√
T (ψ̂Step 1−ψ0) = Op(1). Next, compute the elements of E[∇ψg

c(zt,φ0;ψ0)].

Let i, j, k ∈ {1, . . . , n} and i 6= j 6= k. Since xt ⊥⊥ uit,

E{ ∂

∂ψj
[rit −ψ′

ixt − φi(rSt −ψ′
Sxt)][rjt −ψ′

jxt − φj(rSt −ψ′
Sxt)]}

= E{(−xt + φiSixt)ujt(zt,ψ0,φ0)} + E[φjSixtuit(zt,ψ0,φ0)] = 0

E{ ∂

∂ψk

[rit −ψ′
ixt − φi(rSt −ψ′

Sxt)][rjt −ψ′
jxt − φj(rSt −ψ′

Sxt)]}

= E{φiSkxtujt(zt,ψ0,φ0)} + E[φjSkxtuit(zt,ψ0,φ0)] = 0.

Hence, E[∇ψg
c(zt,φ0;ψ0)] = 0.

Condition (i) holds from Assumption 2(iii). Condition (ii) holds by inspection of moment

function g(zt, θ;γ). Conditions (iii) and (iv) hold from Assumption 2(ii). Condition (v) holds

from applying the proof of Theorem 2.

B.2 Application: Robustness

Table 4 reports coefficients and standard errors under alternative winsorization schemes.

Columns 1-3 show that the results are qualitatively similar to the preferred specification

after winsorizing at 5%, 0.5%, and 10% respectively. The fourth column however shows

that estimation without winsorization is unreliable. These results show that the qualitative

features of the main text’s preferred specification aren’t specific to the choice of 1% win-

sorization and that the linear form of the model described in Assumption 1(i) is sensitive to

extreme outliers.

Table 5 summarizes RGIV results under alternative blocking schemes. Starting with the

preferred specification, the first column shifts Ireland from the Portugal/Spain periphery

block to the Greece/Italy periphery block (splitting the periphery countries into an “Iberia”

block and “Other” block). The specification test’s p-value of 0.95 suggests that “Iberia”

specification’s moments are consistent with the data. Moreover, the spillover coefficient for

the Portugal/Spain block is 0.89 compared to 0.83 for the Portugal/Spain/Ireland block in

the preferred specification, suggesting that Ireland’s spillover coefficient is lower than the size-

weighted combination of Portugal/Spain’s. Columns 2 and 3 show that spillover coefficients

are nearly unchanged after moving Slovenia to the core and periphery block respectively (no

specification test is reported since the model is just-identified). The specification in Columns
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5% 0.5% 10% 0%
RGIV results:
φS 0.57 0.54 0.58 -16.57

(0.06) (0.08) (0.05) (10275.21)
φIRL,PRT,ESP 0.82 0.82 0.83 0.98

(0.05) (0.06) (0.05) (2.38)
φGRC, ITA 0.49 0.45 0.5 -28.08

(0.12) (0.16) (0.11) (17084.06)
φCore 0.42 0.38 0.42 0.47

(0.03) (0.03) (0.03) (2.48)
φSVN 0.33 0.33 0.34 0.34

(0.05) (0.06) (0.05) (0.39)
Tests (p-values):

Specification 0.817 0.872 0.679 0.616
Homogeneity 0 0 0 0.275

Table 4: Estimation results. Coefficient estimates for φS , φIRL,PRT,ESP, φGRC, ITA, φCore and φSVN are listed
above standard errors, which are provided in parentheses. p values are provided in the bottom section of
the table for the specification test and parameter homogeneity tests. Columns 1-4 give estimation results
for winsorization at the 2.5 and 97.5 percentiles, 0.25 and 99.75 percentiles, 5 and 95 percentiles, and no
winsorization respectively.

4 separates France from the core countries and moves it into its own group. The specification

test is rejected, giving indirect evidence that French shocks are correlated with those of other

Euro area core countries.

B.3 Observed explanatory variables: Second-step GMM estima-

tion with a consistent first-step estimator of a nuisance pa-

rameter

For completeness, the below identification, consistency, and asymptotic normality results are

straightforward adaptations of those found in Newey and McFadden (1994) (abbreviated as

NM). These results give conditions for identification and inference for two-step estimators,

given a consistent first-step estimator of a nuisance parameter. Following the notation of NM,

the first step nuisance parameter estimator is consistent γ̂
p−→ γ0 where

√
n(γ̂−γ0) = Op(1).

In the second step, θ is the parameter of interest and is estimated using GMM with moment

function g(z, θ;γ) and weight matrix estimator Ŵ
p−→ W , where γ̂ is an estimator for γ.

Moreover, the condition E[∇γg(z, θ0;γ0)] = 0 (for true parameter values γ0 and θ0) ensures

that estimation uncertainty for the first-step estimator doesn’t enter the expression for the

asymptotic variance of the second-step estimator, as is the case for the RGIV estimator with
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Iberia Core SVN Periphery SVN Separate FRA
RGIV results:
φS 0.51 0.54 0.54 0.52

(0.11) (0.08) (0.08) (0.09)
φI 0.89 0.82 0.83 0.83

(0.06) (0.06) (0.06) (0.06)
φII 0.39 0.45 0.44 0.42

(0.2) (0.16) (0.16) (0.18)
φIII 0.4 0.39 0.39 0.4

(0.04) (0.03) (0.03) (0.03)
φIV 0.33 0.38

(0.06) (0.04)
Tests (p-values):

Specification 0.95 – – 0.001
Homogeneity <.001 <.001 <.001 <.001

Table 5: Estimation results for alternative groupings. Coefficient estimates for φS , φI, φII, φIII and φIV are
listed above standard errors, which are provided in parentheses. p values are provided in the bottom section
of the table for the specification test and parameter homogeneity tests. Groups: “Iberia” (I: PRT, ESP; II:
GRC, ITA, IRL; III: AUT, BEL, FRA, FIN, NLD; IV: SVN), “Core SVN” (I: PRT, ESP; II: GRC, ITA,
IRL; III: AUT, BEL, FRA, FIN, NLD, SVN), “Periphery SVN” (I: PRT, ESP; IRL II: GRC, ITA,SVN; III:
AUT, BEL, FRA, FIN, NLD; IV: SVN), “Separate FRA” (I: PRT, ESP, IRL; II: GRC, ITA; III: AUT, BEL,
FIN, NLD, SVN; IV: FRA).

Andrews rule No Fama-French 0-factor GIV 2-factor GIV
RGIV results:
φS 0.54 0.54

(0.07) (0.08)
φPRT,ESP,IRL 0.83 0.83

(0.05) (0.06)
φGRC, ITA 0.44 0.45

(0.14) (0.17)
φCore 0.39 0.4

(0.03) (0.03)
φSVN 0.33 0.34

(0.05) (0.06)
φGIV 0.42 0.31

(0.03) (0.06)
Tests (p-values):

Specification 0.93 0.952
Homogeneity <.001 <.001

First-stage F -statistic 411 112

Table 6: Estimation results. Coefficient estimates for φS , φIRL,PRT,ESP, φGRC, ITA, φCore and φSVN are listed
above standard errors, which are provided in parentheses. p values are provided in the bottom section of the
table for the specification test and parameter homogeneity tests.
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observed explanatory variables.

The below identification lemma (Lemma 5) extends NM Lemma 2.3, the consistency

theorem (Theorem 5) extends NM Lemma 2.6, and the asymptotic normality theorem (The-

orem 6) extends NM Theorem 3.4. The proofs for these extensions are, for the most part,

identical to the original NM results. Notably, care is taken to ensure uniform convergence of

the GMM objective function in Theorem 5 and the expected Jacobian matrices in Theorem

4.

These results can be applied to estimators where the second step GMM estimator is

over-identified, as is the case for RGIV when n ≥ 4. In contrast, an application of the

results featured in Newey and McFadden (1994) Chapter 6 requires the number of moment

conditions to equal the number of parameters of interest.

Lemma 5 (Identification, two-step). If W is positive semi-definite and, for g0(θ) = E[g(z, θ;γ0)],

g0(θ0) = 0, and Wg0(θ) 6= 0 for θ 6= θ0 then Q0(θ) = −g0(θ)′Wg0(θ) has a unique maximum

at θ0.

Proof. Apply an identical argument as the one used for the proof of NM Lemma 2.3.

Let R be such that R′R = W . If θ 6= θ0, then 0 6= Wg0(θ) = R′Rg0(θ) implies Rg0(θ) 6= 0

and hence Q0(θ) = −[Rg0(θ)]′[Rg0(θ)] < Q0(θ0) = 0 for θ 6= θ0.

Theorem 5 (Consistency, two-step). Suppose that zi, (i = 1, 2, . . . ), are i.i.d., Ŵ
p−→ W ,

γ̂
p−→ γ0, and (i) W is positive semidefinite and WE[g(z, θ;γ0)] = 0 only if θ = θ0; (ii)

θ0 × γ0 ∈ Θ × Γ compact; (iii) g(z, θ;γ) is continuous at each θ × γ ∈ Θ × Γ with

probability one; (iv) E[supθ,γ ‖g(z, θ;γ)‖] < ∞. Then θ̂
p−→ θ0.

Proof. Proceed by verifying the hypotheses of Theorem 2.1 of Newey McFadden (abbreviated

as NM2.1):

• NM2.1(i): Follows from Lemma 5 and Condition (i).

• NM2.1(ii): Follows from Condition (ii).

• NM2.1(iii): Newey and McFadden Lemma 2.4, Condition (iii), and Condition (iv)

imply that supθ ‖ 1
n

∑n
i=1 g(zi, θ; γ̂) −E[g(z, θ; γ̂)]‖ p−→ 0 and E[g(z, θ;γ0)] is continuous

in θ. Moreover, γ̂
p−→ γ0 implies supθ ‖ 1

n

∑n
i=1 g(zi, θ; γ̂) − E[g(z, θ;γ0)]‖ p−→ 0. Hence,

2.1(iii) holds because Q0(θ) = −E[g(z, θ;γ0)]
′WE[g(z, θ;γ0)] is continuous.

• NM2.1(iv): For uniform convergence of the objective function Q̂n(θ) to Q0(θ), follow
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similar computations to Newey and McFadden (1994) Theorem 2.6:

|Q̂n(θ) − Q0(θ)| ≤ ‖ 1

n

n∑

i=1

g(zi,θ; γ̂) − E[g(z,θ;γ0)]‖2‖Ŵ ‖+

2‖ 1

n

n∑

i=1

g(zi,θ; γ̂) − E[g(z,θ;γ0)]‖‖ 1

n

N∑

n=1

g(zt,θ; γ̂) − E[g(z,θ;γ0)]‖‖Ŵ ‖+

‖E[g(z,θ;γ0)]‖2‖|Ŵ − W ‖2.

Theorem 6 (NM (1994) Theorem 3.4, modified). Suppose the hypotheses of Theorem 5

are satisfied. Also assume
√
n(γ̂ − γ0) = Op(1), E[∇γg(z, θ0;γ0)] = 0, (i) θ0 × γ0 ∈

interior(Θ × Γ); (ii) g(z, θ;γ) is continuously differentiable in a neighborhood N of θ0 × γ0

with probability approaching 1; (iii) E[g(z, θ0;γ0)] = 0 and E[‖g(z, θ0;γ0)‖2] < ∞, (iv)

E[supθ×γ ‖∇θ×γg(z, θ,γ)‖] < ∞; (v) G′WG is non-singular for G = E[∇θg(z, θ0;γ0)].

Then, for Σ = E[g(z, θ0;γ0)g(z, θ0;γ0)
′],

√
n(θ̂ − θ0)

d−→ N(0, (G′WG)−1G′WΣWG(G′WG)−1).

Proof. Conditions (i),(ii), and (iii) imply that the first order condition is satisfied with prob-

ability approaching one: 2Ĝn(θ̂)′Ŵ ĝn(θ̂) = 0 for Ĝn(θ̂) = ∇θ
1
n

∑n
i=1 g(zi, θ̂, γ̂). Expanding

the FOC about θ0 and γ0 and rearranging gives

√
n(θ̂ − θ0) = −(Ĝn(θ̂)′Ŵ Ĝn(θ))−1Ĝn(θ̂)Ŵ

√
n

n

n∑

i=1

g(zi, θ0; γ̂)

= −(Ĝn(θ̂)′Ŵ Ĝn(θ))−1Ĝn(θ̂)Ŵ

√
n

n

n∑

i=1

g(zi, θ0;γ0)

− (Ĝn(θ̂)′Ŵ Ĝn(θ))−1Ĝn(θ̂)Ŵ
1

n

n∑

i=1

∇γg(zi, θ0;γ)
√
n(γ̂ − γ0)

p−→ N(0, (G′WG)−1G′WΣWG(G′WG)−1)

where θ and γ are intermediate values. In the above display, γ̂
p−→ γ0, θ̂

p−→ θ0, and condition

(iv) imply Ĝn(θ̂)
p−→ G, Ĝn(θ)

p−→ G, and 1
n

∑n
i=1 ∇γg(zi, θ0;γ)

p−→ 0. The final line follows

from the Slutzky theorem and an i.i.d. central limit theorem.
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B.4 RGIV when the shock factor is determined by known observ-

ables

In this section, I show that differencing RGIV moments can accommodate the case where

the shock factor structure is entirely determined by known observables. I also show that the

identification reduces to an overdetermined system of nonlinear equation, which admits a

unique solution (with the parameter space restriction φS < 1) outside of knife-edge cases.

B.4.1 Setup

Take Assumption 1 and augment with latent factors ηt (m×1) where E[ηtη
′
t] = I (and finite

fourth moments) and loadings λi (m × 1), which are entirely determined by observables xi

(m× 1) through Π (m×m)

rit = φirSt + λ′
iηt + uit︸ ︷︷ ︸

vit

, λi = Πxi.

Also suppose there are more GMM moment conditions (less the square of the number of

observables) than there are unknowns (n(n − 1)/2 − m2 ≥ n). Π (m × m) maps the unit-

specific observables to the loadings and is unknown to the researcher. In matrix form, for

X =
[
x1 x2 . . . xn

]
and Λ =

[
λ1 λ2 . . . λn

]
,

Λ = ΠX, rt = φrSt + Λ
′ηt + ut︸ ︷︷ ︸

vt

, and rank(X) = m.

The shock covariance matrix is E[vtv
′
t] = X′

Π
′
ΠX + D for diagonal matrix D with

diagonal entries σ2
1, σ

2
2, . . . , σ

2
n. Vectorizing and selecting the off-diagonal elements of the

covariance matrix with selection matrix S (n(n− 1)/2 × n2),

Svec (E[vtv
′
t]) = S (X′ ⊗ X′) vec (Π′

Π) .

Premultiplying the above display by the annihilator matrix (for arbitrary matrix W , defined

as W MW ≡ I − W(W′W)−1W′),

MS(X′⊗X′)Svec (E[vtv
′
t]) = 0. (13)

Hence, a linear combination of the off-diagonal elements of E[vtv
′
t] equals zero.
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B.4.2 Identification

Equation 13 sets a linear combination of RGIV moments to zero. Below, I show that the

spillover coefficients are generally identified outside of a set of knife-edge DGPs. Equation 13

implies a system of (univariate) quadratic equations in the errors of a particular spillover co-

efficient. For there to exist a solution other than the true solution, these quadratic equations

must have identical zeros—which isn’t true in general.

For true spillover coefficients φi and proposed solutions φ̃i, let φ̌i ≡ φi − φ̃i give the error

in spillover coefficient φi. The moment condition corresponding to the idiosyncratic shocks

of units i and j can be written as

E

[
(rit − φ̃irSt)(rjt − φ̃jrSt)

]
= φ̌iφ̌jk + φ̌ikj + φ̌jki

for k ≡ E[r2
St] and ki ≡ E[rSt(uit + λ′

iηt)]. For i 6= j, the above display’s moments can be

stored in an n(n− 1)/2 × 1 vector g̃ matching the ordering of Svec (E[vtv
′
t]) in Equation 13.

Hence, identification of the moments characterized by Equation 13 reduces to studying the

roots of MS(X′⊗X′)g̃ = 0.

Since rank(MS(X′⊗X′)) = n(n − 1)/2 − m2, MS(X′⊗X′) can be expressed in reduced row

echelon form (after elementary row operations)


 In(n−1)/2−m2 −A

0m2×(n(n−1)/2−m2) 0m2×m2


 .

Letting g̃I be the first n(n−1)/2−m2 moments and g̃II be the lastm2 moments, MS(X′⊗X′)g̃ =

0 can equivalently be expressed as

g̃I = Ag̃II . (14)

The moments g̃I equal some (known) linear combination of g̃II determined by matrix A.

To characterize the solutions, fix g̃II and let a ≡ Ag̃II where aij is the entry of vector a

that corresponds to the moment condition for shocks i 6= j. Then the row of Equation 14

corresponding to the shocks of units i and j is

φ̌i(kj + φ̌jk) + φ̌jki = aij.

After rearranging and setting unit 1 as the reference unit, φ̌i = ai1−φ̌1ki

k1+φ̌1k
and φ̌j =

aj1−φ̌1kj

k1+φ̌1k
.
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Substituting φ̌i and φ̌j,

aij = φ̌i(kj + φ̌jk) + φ̌jki =
ai1 − φ̌1ki

k1 + φ̌1k
kj +

aj1 − φ̌1kj

k1 + φ̌1k
ki +

(ai1 − φ̌1ki)(aj1 − φ̌1kj)

(k1 + φ̌1k)2
k.

Rearranging yields a quadratic equation in φ̌1

0 = α
(ij)
1 φ̌2

1 + α
(ij)
2 φ̌1 + α

(ij)
3 (15)

where α
(ij)
1 ≡ aijk

2 + kikjk, α
(ij)
2 ≡ 2aijk1k + 2kikjk1, and α

(ij)
3 ≡ aijk

2
1 − (ai1kj + aj1ki)k1 −

ai1aj1k. Hence, the above display gives a system of quadratic equations (in φ̌1) defined by

the pairs i 6= j contained in moments g̃I .

If g̃II = 0, then a = 0, α
(ij)
1 = kikjk, α

(ij)
2 = 2kikjk, and α

(ij)
3 = 0. Here, 0 = φ̌1(kφ̌1+2k1).

There are two solutions, which both do not depend on the index i, j: (1) the true solution

φ̌1 = 0 and (2) a false solution φ̌1 = −2k1

k
(which can be ruled out from the condition φS < 1

as is done in Lemma 1).

Now instead suppose g̃II 6= 0. From the quadratic formula, the roots of Equation 15

(dividing by α
(ij)
1 ) are determined by

α
(ij)
2

α
(ij)
1

and
α

(ij)
3

α
(ij)
1

.
α

(ij)
3

α
(ij)
1

in particular depends on the units

i, j through terms ki and kj. Hence, besides knife-edge cases, it is not generally true that

the roots for Equation 15 coincide when g̃II 6= 0.
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